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Two Xinds of Sccras

We are all fawmiliar , as "computer musicians", with the
task of +tramnslating nctes intc samples. A user normally
inputs his notes 1in a Mscore”, executas various ‘'note
transformation angd recrdering® routines, and finally
executes his %orchestra®, In MUSIC4-type programs, note
transformation and reordering tasks are performed in PASS1
and PASS2, while the user's ORCHESTRA is called and executed
during PASS3. 411 these PASSes affect "musical time®. 1In
this paper, we will ccncern ourselves only with the
"note-transformation and reordering” - tasks of PASS? and
PASS52, leaving aside the tenmporal cecnsiderations introduced
by the user's %“orchestral design®.

We are thus ccncerned with two +types of scores. The
PASS1 score reflects tire as specified by the user; the
PASS2 score is the transfcrmaticn of the PASS1 score into
"clock" tinme. If +the +tempo is unchanging or changing in
discrete steps, there 1is nc problem in computing this
transformation. Tc conmpute the duration of a beat, we
simply compute the "pericd® of tempeoc.

Eq. 1 Dur <secs/beat>=60<seconds/min>/tempo<beats/min>

When the tempo is "changing continuously", we encounter
complexities 4in perfcrming our desired ransformations.
Even the concept of the *duraticn cf a beat? is 1initially
puzzling.
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Graphing Musicts Times

Let us assume that the "beat line" of a musical passage
is continuous and that we may speak of "beat points" in a
manner analogcus to the wsay we speak of points on a linea
There are thus an infinite number of beat points on the beat
line. Further, between any two beat points there are an
infipite number of beat pocints. There is a tempo associated
with every beat pcint in a passage. Similarly, there 1is a
Uperiod” associated with every beat point. This period is
simply the duraticn that one beat would have at the
associated tampo. We will henceforth call this period the
“clock factor® of a beat pcint.

Example 1 shows a graph of the 1linear increase of
elapsed time vs tteats when the tempo is a steady 60 beats
per minute. If we were tc graph this steady tempo vs beats,
we would simply produce a straight line parallel to the
"heat axis™. Example 2 shows a graph of <clock factor vs
beats for 6 beats at a tempo of 60 beats per minute and 6
beats at a tempo cf 90 beats per minute. HNote a point of
fundamental dimpcrtance; the area under the clock factor
curve eguals elapsed time in seconds. Thus:

1. The clock factcr is the derivative of, or instantaneous
rate of change in, elapsed time vs beats.

2. Elapsed time is the integral of, or area under the curve

- formed by, clock factor vs Leats.

3. A steady teapo is one in which each beat point has the
same clock facteor.

4. An acceleration cccurs when each beat pcint of a passage
is associated with a smaller clock factor (and larger
temnpo) than the preceding beat pcinta.

5. A ritard occurs when each beat pcint of a passags is
associated w#ith a larger <clock factor {(and a smaller
t2npo) .

The shape of tempo change and the shape of clock factor
change will rarely bs of the same type. Example 3 graphs a
linear tempo change from 60 to 120 cver 12 beats. Example 4
shows the hyperbolic clock factcr curve associated with this
tempo change. Example 5 graphs a linear, clock-factor
accelerando from 1. toc .5 cver 12 beats; Example 6 shows
the associated hyperbolic tempc curve.
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It is easy tc compute the *temporal area" associated
with a linear clock factecr. The "durational area® of Ex. 5
is obviously 9 seconds.

Equations 2 and 3 are used to ccmpute a linear tampo and
its associated duraticr at some beat poirnt, bp. The
durational area of Ex. 4 is 8.3177 seconds.

Ege 2 T{tp)=(K * bp) + C

where T (bp) is the *ermpoc at scme beat point; and
K and C are constants given T1{the first tempo)
and T2(the ending tempo}.

T{0) = (K*0) + C; +thus C =60
T(12) =12K + 60; thus K = 5.
Eq- 3 DUR(bp) = (60.,K) * 1ln{T(bp)/T1)

DUR {12)

(60/5) * 1n(2) = 12 * .6931;

DUR (12) 8.3177.

I}
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The Equal Ratios Curve

Eqe 4 shows the equal ratics function applied to tempo.

EQ. 4 T(bp) = T1 * ((T2/T1)**(bp/B))

where B is the total number of beats in the
passage.

The TVAL program of HMUOSIC4's PASS2 evaluates tempo
change wusing the equal ratios curve. The tempo program we
will describe later will be "biased towards" equal ratios.
There are good reasons for this Yegqual ratios" preference in
tempo relaticons. Perhaps the strongest is that we tend to
interpret tempi related by vpowers of 2 in an analogous
manner to the way we interpret the relationship of <quarter
notes, eighth notes, sixteenth notes, etc. The equal ratios
curve alsc possesses the following attractive mathematical
properties:

1. Its reciprocal is egqual ratios. This means that if
tempc is increasing by egual ratios, clock factor will
be decreasing by equal ratics.

2. Its integral is alsc equal ratios. This means that the
real—-time" durations of successive beats will be
related by equal ratics.

3. It is symmetric under reflection. This means that a
ritard from tempc 2x to 1x is exactly the same as the
retrogression of an accelerando from 1x to 2x.

Example 7 shows an egual ratios accelerandc from 60 to
120 over 12 beatsa Example 8 graphs the changing clock
factor associated with this accelerating tempo and thus
shows us "temporal area". Eq. 5 is the expression for
calculating the "egual ratios® duration at some beat point.

Eq. 5 DOUR{bp)={60,T1) * {B/1n{T1/T2)) * ({(T1/T2)**(bp/B)-1)

The duration under the clcck factor curve in EX. 8 is
thus 8.656 seconds, shcwing that equal ratios produces a
duration 1longer than that produced by a 1linear tempo
increase but shorter than that produced by a hyperbolic cne.
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Three Special Cases

1« Deriving Unknecwn Egual-Ratics Tenmpi

Suppcse we know, with reference to some passags, its
duration in seconds, its beginning cr ending tempo (but not
both), ané the fact that it employs the equal ratios curve.
Since we kncw that the clock factor at some bp is the
derivative of elapsed time with <rTespect to beats, it is
possible to use numerical techniques to differentiate the
missing «clock factor and its asscociated tempo. Thesz
techniques are used in the tempo rountius we will describe
shortlye.

2. Urnegual Ratios

There are many sitvaticns to which the equal ratios
tempo <curve cannot be applied. Sometimes the passagde is
"overspecified” in the serse that one knows the beginning
tempo, the ending tempo, and the +total duration in seconds.
If +he duratiocn does not agree uith that produced by egual
ratios, a different curve nust be used. In cther cases,
another curve may be desired sirply for assthetic reasons.

It is not clear at present how many different +types of
curves need to be integrated tc serve as the basis for teampo
computation. It is possible tc produce close approximations
of most desired curves by VYcrdered distcrtions" of equal
ratios curves. These distcrtions may be obtained by raising
the eqgual-ratios, cleck-factor valuss to cdd powers {even
poOWeErs produce singularities and other types of
problems) ,"averaging® adjacent Wpower distortions®", and
"reflecting” +he distorted curves sc produced about a
"linear tempo axisW.. Curves whose slcpe changes sign can
usually be treated in segments cver which +the clock-factor
curve 1s nmonotonic. These techniques are incorporated in
the tempc subroutine we will describe shortly.

3. The Inverse Equal-Ratics Curve

An egual ratios tempc change gets "faster faster" and
"slower mecre slewly”. This may cause problems. If it does,
the "inverse" egqual ratics curve may prove to be helpful.
The inverse equal ratiocs curve increases by the same amount
the retrograde of the equal ratios curve decreases.
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™

Eqa

Eg.

6 T{bp) = T1 +(T2 - (T1 * (T2/T1)**{{B-bp)/B)))

The duration of an inverse equal ratios <curve may be
obtained by using Eg. 7.

70D =

DLT - (DER - DLT)

where

D is the inverse equal ratios duration,

DLT is the duration associated with a linear tempo
change, and

DER is the duration of an equal ratios tempo
change.
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An A-Subroutire for Tempoc Manipulation

The TVAL program and MUSIC4's PASS2 <contain two basic
temporal problems. First, since tempo is applied to events
after they have been sorted intc a presumed temporal order,
it is wvery difficult tc produce independent simultaneous
tenpi. A second and more serious difficulty is connected to
tne Yquantization® of +tempo <change. TVAL computes tempo
change discretely, nct ccntinuously. The number of discrete
segments used =2quals the number of PASS3 "time-segments®,
This means that passages %ill take up differing amounts of
clock-time depending cn the number and distribution of notes
in the passage. TVAL thus does no*t have a unique solution
tc the gquesticn posed by several of our earlier exampies,
"Given a starting tempe, an ending tempo, and a shape of
tempo change, what time is it at beat 127?%

We will dinccrpcrate our tempc +transformations in a
FORTRAN-language A-Subroutine which <calls several other
FONCTIONS and SUBROUTINES, also in FORTRAN. The
A-Subroutine is the standard method o¢f PASS1 data
modification in MUSIC4. The main advantage of PASS1 tempo
processing 1is that 1t allcws the user to operate on "the
notes® in +their *entered crder"™ befcre they have been sorted
into a presuned tempcral crder. This means that
simultanecus "different tempi®™, ritards, accelerandos, etc.
are easy and straight-fcrward. 1In order to keep all parts
coordinated, cur routine must evaluate time continuously and
be able tc integrate the functicn shapes it needs.

APPENDIX I of this article contains a printout of an
extensively commented versicn c¢f cur tempc routines.
Several special featurses cf the prcgrams are discussed there
in more detail than we can go into in this talk. APPENDIX
II shows many extensively-documented, PASS1-PASS2 examples
cf the uses of this program. For the present, we will give
a brief overview cf the way one normally uses the progranm.
This discussion must assume that the user is familiar with
data handling in MUSICU's PASS1 since a discussion of +this
subject would far exceed the time we are allocated.

We define the beginning of a PASS1 +time-segment to be
the beginning beat pecint of the segment; the end of the
ime-segment 1is the beginning beat point of +the naxt

segment. A particular +tempo is associated with the
beginning beat pcint of each time segment. A duration in

saconds 1s also associated, eitker implicitly or explicitly,
with each time segment. The direction of tempo change may
change between PASS1 time-segments, but cannct change within
time segments. One “note® %ill often participate in many
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different time-segments. Fach PASS1 time segment 1is
characterized by:

[<beat point in beats> <tempo in beats/min> <dur in secs>].

Wwe will call a field which contains these three pieces
of infeormaticn a "T-field". 1T-fields are divisions of our
PASS1 tempo card. Special features of the A-subroutine may
be activated by certain "unusual” values being placad in a
T-field.

1« If the dur-in-secs pa:émeter is 0, we will assume equal
ratios i1s the desired shape of tempo change.

2. If a positive dur-in-secs value is present, we will
derive a tempo change curve which results in an =2lapsed
time equal to the given duration, if such a curve is

possible. If the curve is impossible, an error message
will ke generated for the user and equal ratios will be
used.

3. If a tempo is negative, we %ill take this as a <clue to
supply a P"amissing equal-ratios tempo”. The absolute
value of the "negative +tempo” will be taken as the
dur—-in-secs value of the passage.

In addition to these special cases, the program handles the

following:
1. If +wo =successive tempo fields are the same, we
recognize a steady tempo cver the time segment.

)
.

If two successive beat point fields are the sanme, we
recognize an instantanecus tempo change.

3. The "normal" case is for Lkeat pcints and tempi *o be
changing while duraticns remain O.

The PASS1 tempo card and the notes on which it operates
should be entered using the "N-card® mechanism. This is
described ir detail in APPENDIX I. The A-routine for tempo
manipulation is «called 22. Varicus kinds of housekeeping
data may be entered on the A-card itself. These options are
described in APPENDIX I3 here we will cecntent ourselves
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wittk the normal case in which the only data the A~-Routine
recives on its Ycalling card"® is +he nunber of the routine,
2.

Example 9 (which is alsc Section 8 of APPENDIX II) shows
a typical rur c¢f the A2 subroutine. The PASS1 printout
shows the input score and +the T-card asking for an
egqual-ratios accelerandc from €0 te 120 over 12 beats. The
PASS2 printout shows the actual durations produced by the
operation of A2. Kote <that the time at the begimning of
beat 12 is B8.656 seconds. Eg. 4 may be used to verify the
correctness of the cther duraticns and starting times.
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A Passage from Ellictt Carter's Double Concerto

Consider Ex. 10, a passage from Elliott Carter's Double
Concerto. The piano is accelerating from 140 to 210 over 9
beats while the remaining parts hold a steady tempo of 140
for 8 Leats. The dinterim tempi of the accelerando are
almost, but not quite, egnal ratios. (B tempo of 160
instead of 159 would give egual ratios.) The duration of the
passage is determined by the steady tempo of the non-piano
parts and 1is 3.42€86 seconds. An equal ratios accelerando
produces far too short a duration for the piano, 3.171
seconds. We may try to divide cur curve into three separate
equal ratios curves and aim them at Carter's interim tenmpi.
This produces 3.182 seconds, a duration which is still
almost a beat off in the new tesmpo.

A more reasonable tctal time fcr the passage is given by
simply playing successive 3 beat units in the *steady" tempo
indicated and changing ®"instantly®” to the next tempo at the
indicated interim tempc location. This Mupper 1limit®
interpretation gives a duration of 3.401 seconds and is very
close to the necessary duraticn, though still slightly too
short.

Several other scluticns +to this passage suggast
themrselves:

1= Tempo change might be intrcduced into the ®steady parts®
so that their duraticn could te made to agree with any
desired duration in the piaro.

2. The beginning or ending tempo c¢f the piano could be
changed so that equal ratios tempo change could be used.

3. Different time-segments cculd be considered so that
equal-ratios cculd still be used to produce the desired
duration.

4, A v"distorted® version cf equal ratics could be used to
produce a tempo curve that will give the desired
duration. APPENDIX III contains several related
PASS1/PASS2 realizations <¢f this passage using this
cption in the call tc A2.
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Conclusions

The paper you have just heard represents a synoptic and
selective view <c¢f material +treated more fully 3in the
authors!' "A Question of Time". Several articles on the
general topic of time and music have appeared recently in
journals of music theory. We wculd like to believe that all
this activity signals a willingness on the part of theorists
and compcsers +t¢ try cnce again +to grapple with this
fundamentally important anmd puzzling relationship. Thus, in
conclusiocn, we offer the suggestion that a panel be devoted
to the topic of "Time and <Computer Music" at the next
meeting of this organizaticn.
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Example 5= Linear Clock FheToR ve Beats
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Example 9 (Section 8 of the APPENDIX II) Rogers & Rockstroh

CTZION NUMBER 8x%%%

c EQUAL-RATICS ACCZLERANDO FFOH 60 TO 120 OVER 12
N1 1.

T930010. = 60. 0. 12. 120. 0.

N 2 0.

N 3 -2.

I 40020. 1. 500. 7.00 .01 .05 1. -.09
I 40031, 1. 500. 7.01 .01 .05 1. -.09
I 40042, 1. 500. 7.02 .01 .05 1. -.09
I 40053. 1. 500. 7.03 .01 .05 1. -.09
I 40064. 1. 500. 7.04 .01 .05 1. -.09
I 40075. 1. 500. 7.05 .01 .05 1. -.09
I 40086. 1. 500. 7.06 .01 .05 1. -.09
I 40097. 1. 506. 7.07 .01 .05 1. -.09
I 40108. 1. 500. 7.08 .01 .05 1. -.09
I 401189, 1. 500. 7.09 .01 .05 1. -.09
I 401210. 1. 500. 7.10 .01 .05 1. -.09
I 401311, 1. 500. 7.11 .01 <05. 1. -.03
I 401412, 1. 500. 8.00 .01 .05 1. -.09
¥ 4 0.

A 2

A10 -5. -6.

B 1 J. 6. 6. 24, 24, 6.

S

0SECTION NO. 8
*%xx % AN ACCURATE EQUAL RATIOS ACCELERANDO**%k¥%

I 37. 0.000 0.972 50C. 000 7.000
I 37. 0.972 0.917 500.C00 7.010
I 37. 1.889 0.866 . 5C0.C00 7.020
I 37. 2.754 0.817 500.000 7.030
I 37. 3.572 0.771 500.000 7.040
I 37. 4.343 0.728 500. 000 7.050
I 37. 5.071 0.687 500.C00 7.060
I 37. 5.758 0.649 500.0G00 7.070
I 37. 6.406 0.612 500.000 7.080
I 37. 7.018 0.578 500.C00 7.09¢0
I 37. 7.596 0.545 500.000 7.100
I 37. 8.141 0.515 500.000 7.110
I 37. 8.656 0.500 500.C00 8.000
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