APPLICATIONS OF LINKED DATA STRUCTURES
TO AUTOMATED COMPOSITION

Charles Ames
49-B Yale Avenue
Eggertsville, New York

U.S.A.

ABSTRACT

This paper describes how lists, trees, and
networks are employed in the set of
composing programs developed by the author
for the 1985 Tsukuba Exposition. Ames
first introduces basic terminology
associated with linked data structures.

He shows how linear lists can be used to
collate simultaneous rhythmic layers and
to enhance sensitivity to current or
recent musical events. He next discusses
how linked lists are compounded into a
linked tree of finite depth and infinite
breadth, which Ames uses to organize a
knowledge base of passing progressions
between "source" and "destination" chords.
The remainder of the paper discusses three
instances in which Ames designed linked
networks to represent complex musical
structures: 1) a hierarchic form of
"origins"”, "nodes", and "goals", in which
each ow-level element links to two
higher-level elements, 2) a three-tiered
monodic network of chords, basic melody
notes, and embellished melody notes, and
3) a polyphonic network which organizes
notes both "horizontally" into
contrapuntal parts and "vertically" into
chords.

1.0 INTRODUCTION

This paper describes the linked data
structures employed by the set of
composing programs which I developed for
the 1985 International Exposition in
Tsukuba, Japan. These programs implement
four compositional schemes according to
musical directives supplied by three
composers: Toy Harmonium (John Myhill),
Circus Piece (Lejaren Hiller), Transitions
(Charles Ames), and Mix or Match (Hiller
and Ames). The Toy Harmonium program was
implemented with assistance from Leonard
Manzara. For details of the musical
directives, of the general strategies used
to realize them, and of the circumstances
surrounding the project, I refer readers
to a companion paper by Lejaren Hiller,
Robert Franki, and myself (1).

Though linked structures such as lists,

251

14226

trees, and networks have long been core
subjects in undergraduate computer science
curricula, their integration into
composing programs has been slow. I hope
to demonstrate here that advanced data
structures for music are much more than an
intellectual curiosity. During my recent
experience with the Tsukuba project, I
found myself confronted by many problems
of implementation which lent themselves
quite elegantly to linked structures;
indeed, many of these problems could only
have been solved by longer, less general,
and much slower programs -- had not linked
structures been available.

I stress that all of the applications
described in this paper were motivated by
practical necessity, not by fashionable
programming philosophies or by special
features of the language (2). As has been
my practice over the past several years,
each of the Tsukuba programs was developed
from scratch with the specific goals of
the composer(s) in mind. Not only does
this practice enable me to optimigze
algorithms and data structures for the
tasks at hand, it continuously encourages
me to seek out new ways of solving
problems. S

2.0 FUNDAMENTALS

A data structure is a construct of
elements called either nodes or records,
each containing one or more fields of
discrete information. For example, a
melody might be represented using a data
structure with one node of data describing
each note. Attributes such as the
starting time, duration, and pitch of a
note would occupy fields within such a
node.

In a linked data structure, each node
incorporates additional fields called
links or pointers. These additional
flelds direct a program to relevant items
in the structure, for example: to the
"predecessor" or "successor" of each note
in a melody (3).

ICMC °85 Proceedings

SEGMENT_TIME = O;

do for each segment of music:
compute SEGMENT_DURATION;
do- For each layer of music in the current segment:

SUM = 0;

do while SUM < SEGMENT_OURATION:
detach NOTE from head of FREE;
compute OURATION(NOTE);

SUM =

SUM + DURATION(NOTE};

append NOTE to tail of LAYER;

end doj;
SQUEEZE =

TIME = SEGMENT_TIME;
NOTE = head of LAYER;

do while NOTE > O:
OURATION(NOTE)

SEGMENT_DURATION / SUM;

= DURATION(NOTE) * SQUEEZE;

START(NOTE) = TIME;
TIME = TIME + DURATION(NOTE);
NEXT = SUCCESSOR(NOTE);
detach NOTE from LAYER;
insert NOTE in BUFFER relative to START(NOTE);
NOTE = NEXT;
end doj;
end doj

Flush BUFFER;
SEGMENT_TIME =
end do.

SEGMENT_TIME + SEGMENT_DURATION;

Figure 1: Mechanism for synchronizing rhythmic layers in Toy Harmonium.

3.0 LINEAR LISTS

The simplest of linked data structures are
linear lists, and an excellent example of
a linear 1list is the melodic structure
described above. Linear lists are used to
organize gequences of nodes; that is,
each node 1n a linear list has at most one
direct "predecessor" and at most one
direct "successor" (4). Linear lists are
most appropriate when sequences are
subject to frequent insertions and
deletions, because such modifications can
be effected simply by revising a few
links: (5).

3.1

John Myhill's compositional directives for
Toy Harmonium described a piece divided up
into segments, each with many simultaneous
rhythmic layers. Some of these segments
diverge gradually from blocked chords into
random clouds; others converge gradually
from clouds into blocked chords. In order
to bring the rhythm back into
synchronization at the end of a segment,
Manzara and I adopted the expedient of
generating an independent rhythmic
sequence for each layer, then "squeezing"
this sequence so that it would fit exactly
into the segment.. The program collates
these different layers into a single
stream of notes which it passes into a
subsequent pitch-selection stage.

Rhythmic Layering

Figure 1 shows how the rhythmic layers of
Toy Harmonium are processed. The
mechanism involves three linear lists,
denoted in Figure 1 as FREE, LAYER, and
BUFFER. FREE holds all nodes not
currently being used to describe notes;
LAYER serves as a temporary holding queue
for notes in the current layer, prior to
squeezing; BUFFER holds all previously

ICMC °85 Proceedings

252

generated notes in the current segment,
sorted in increasing order of starting
times. Of the linked-list operations
employed in Figure 1, "insertion" and
"flushing" require explanation. The
program "inserts NOTE into BUFFER relative
to START(NOTE)" by 1) setting a pointer
PTR to the tail of BUFFER, 2) working its
way backward through BUFFER until
START(PTR) no longer exceeds START(NOTE),
and 3) "inserting" NOTE into BUFFER just
after PTR. The program "flushes" BUFFER
by repeating the following steps until
BUFFER is empty: 1) detaching a node from
the head of BUFFER, 2) writing out the
note attributes stored in this node, and
3) appending the node to FREE.

3.2 Sensitivity to Current Events

For his Circus Piece, Lejaren Hiller
supplied me with a sheet of music paper
containing twelve handwritten "modules"
which the program was to employ in various
transpositions, registers, and
instrumentations. He directed me that the
proportions in which these modules and
attributes of modules were to be chosen
should follow certain prescribed
statistical distributions, as should the
number of modules occuring simultaneously
at any given moment in the piece.

In order to realize Hiller's directives, I
developed a program which maintains a list
of all the modules currently sounding.

The starting time for each group of newly
entering modules is determined by the
earliest ending time in this list. At
such moments, the program first computes
how many new modules will enter in
accordance with Hiller's prescribed
distribution. It then selects attributes
for these new modules and appends them to
the 1list. Once the attributes of any new

TIME = SECTION_TIME;
COUNT = 0;
do while TIME > SECTION_TIME + SECTION_DOURATIDN:

compute number of current modules NUM;
do NUM-COUNT times:
acquire a free node MOOULE;
STAAT(MOOULE) = TIME;
select INOEX(MODULE) not already present in LIST with
the same starting time;
select KEY{MODULE) not already present im LIST;
select REGISTER(MODULE) not already present in LIST;
select TIMBRE(MODULE) not already present in LIST;
DURATION(MOOULE) = MODULE_DURATION(INDEX(MODULE));
END(MODULE) = START(MODULE) + DUHATION(MODULE),
insert MODULE in LIST relative to END(MODULE) ;
compute PITCH_OFFSET from KEY(MODULE) and REGISTER(MODULE);
POINTEA = head of MATERIAL (INDEX(MODULE));
do while POINTER > O:
acquire a free node NOTE;

START(NOTE) = STAAT(MODULE) + START(POINTER);
PITCH(NOTE) = PITCH_OFFSET + PITCH(POINTER);
DURATION(NOTE) = DURATION(POINTER);
TIMBRE(NOTE) = TIMBRE(MODULE);

insert NOTE in BUFFER relative to START(NOTE);

POINTER = SUCCESSOR(POINTER);

end doj;
end do;
COUNT = NUM;
MODULE = head of LIST;
if MODULE > O then:
TIME = END{MODULE);

do while MODULE > O and END{MODULE) =

TIME:

NEXT = SUCCESSOR(MODULE);
detach MODULE from heed of LIST;
return MODULE to free memory;

MOOULE = NEXT;
COUNT' = COUNT - 1;
end do;
else:
TIME = TIME + BEAT;
end if;
end do;

Flush BUFFER.

Figure 2:

module have been determined, the program
collates the contents of this module into
a common stream of notes.

Figure 2 shows the process used to compose
Circus Piece. Explicit in Figure 2 are a
list of currently active modules called
LIST and a note gueue called BUFFER
serving much the same purpose as BUFFER in -
Figure 1. ' Lists of free nodes for modules
and notes are also implicit in the

- process; should the list of free nodes
for notes become exhausted, the program
recycles nodes by writing out the earliest
notes in BUFFER. Also consulted by the
program are lists of musical material
indexed under the generic symbol MATERIAL:
MATERIAL(I) contains material for the Ith
of Hiller's twelve modules.

Notice that the program inserts modules
into LIST with respect to ending times
rather than starting times. This
procedure insures that the modules which
finish soonest will always reside at the
head of LIST.

3.3 Sensitivity to Recent Events

The material of my own Transitions is a
contrapuntal texture organized
horizontally as a progression of chords
and vertically as a composite of six
"registral channels" (6 As it generates

253

‘highest registers;

~to the fundamental freguency;

Mechanism for scheduling module selections in Circus Piece.

this texture, the program also

.orchestrates it by selecting one of six

"spectral" channels and one of six
"spatial" channels for each note. .
Registral, spectral, and spatial channels

~are spaced equidistantly between limits

established by the program: lowest and
lowest and highest
positions of a band-pass filter relative
left and
right speaker. The companion paper (1)
details how registral and spectral limits

"evolve over the course of the work.

The texture-generating mechanism for
Transitions is controlled by five
parameters selected during an earlier
stage of production: 1) speed - the
average number of chordal attacks per
second of music; 2) syncopation - the
random variance around the speed; speed
and syncopation supply two inputs to a
random function which determines "periods"
between chordal attacks; 3) thickness -
the average number of notes sounding in
each chord (whether new or held over from
the preceding chord); 4) dovetailing -

a percentage governing how many notes hold
over between chords; 5) articulation - a
percentage relating chordal durations to
periods.

Figure'a shows how the texture-generating

mechanism worked. Explicit in Figure 3
are three lists: CURRENT, PREVIOUS, and

ICMC 85 Proceedings

CHORD_START(CHOAD) = SEGMENT_TIME;
do for each chord in segment:

compute number of current notes NUM(CHORD);
compute number of continuing notes SUSTAIN(CHORD),

where SUSTAIN(CHORD) % min(NUM(CHOHD-1),NUM(CHDHD)-1);
compute period between chordal attacks CHORD_PERIOD(CHORD) ;

compute CHORD_OURATION(CHORD),

where CHORD_DURATIDN(CHORD) = CHORD_PERIOD(CHORAD) ;
do NUM(CHORD-1)-SUSTAIN(CHORD) times:
selact a non-continuing note NOTE from CURRENT;

DURATION(NDTE) =
detach NOTE from CURRENT;

DURATION(NOTE) + CHORD_DURATION(CHORD-1);

append NOTE to tail of PREVIOUS;

end doj;
NOTE = head of CURRENT;
do while NOTE > O:

DURATION(NOTE) =
NOTE = SUCCESSOR(NOTE);
end doj;

DURATION(NOTE) + CHORD_PERIOD({CHORD-1);

do NUM(CHORD)-SUSTAIN(CHORD) times:

acquire a free node NOTE;
START(NOTE) =
DURATION(NOTE) = O;

CHORD_START (CHORD) ;

select a registral channel REGISTER(NOTE)
not already present in CURRENT;
select a spectral channel SPECTRUM(NOTE) so that
1) any note in PREVIOUS with the same registral channel
has the same spectral channel,
2) any note in PREVIOUS with a different registral channel
has a different spectral channel,

3)

no other note in CURRENT has the same spectral channel;

select a spatial channel LOCATION(NOTE)
subject to the constraints governing spectral channels;
append NOTE to tail of CURRENT;

end do;

NOTE = head of PREVIOUS;

do while NOTE > O:
DURATION(NOTE) =
detach NOTE from PREVIOUS;

DURATION(NOTE) + CHORD_DURATION{CHORD) ;

insert NOTE in BUFFER relative to START(NOTE);

NOTE =
end do;
CHORD = CHORD + 1;
CHORO_START(CHORD) =

end doj;

NOTE = head of CURRENT;

do while NOTE > O:
DURATION(NOTE) =
NEXT = SUCCESSOR(NOTE);
detach NDTE from CURRENT;

NEXT ;

CHORD_START(CHORD-1) + CHORD_PERIOD(CHORD-1);

DURATION(NOTE) + CHORD_DURATION(CHORD) ;

insert NOTE in BUFFER relative to START(NDTE) ;

NOTE =
end do;
Flush BUFFER.

NEXT;

Figure 3:

BUFFER. CURRENT holds notes which are
active in the current chord; PREVIOUS
holds notes which released in the
immediately preceding chord; while BUFFER
holds a stream of notes sorted in
‘increasing order of starting times. Each
time it composes a new chord, the program
first determines which notes do not
sustain from the preceding chord and
transfers these notes from CURRENT to
PREVIOUS. The program next supplements
‘the continuing notes in CURRENT with newly
entering notes, selecting channels in each
.instance. The most basic rule for channel
selection is that simultaneous notes may
-not occupy the same channel, and the
.program checks for this condition by
‘examining notes in CURRENT. Phrases
within each registral channel are
‘maintained in spectral and spatial
‘channels as well by the conditions
relating new channels to channels already
present in PREVIOQUS.

ICMC ’85 Proceedings 254

.grammars (7).

Mechanism for generating polyphonic textures in Transitions.

4,0 TREES

We recall that nodes in a linear list are

‘related sequentially as "predecessors" and

"successors". Nodes of a tree, by
comparison, are characterized by
hierarchic relationships between
"superiors" and "inferiors". Though a
node in a tree may have at most one direct
superior, such a node may have an
arbitrary number of direct inferiors.

The process used in Mix or Match to
compose chordal progressions shows how
linked trees can be useful in representing
contextually sensitive "productions" or
"rewrite rules" for generative

This particular grammar
begins with an archetypal progression,
such as:
CM / / FM / G7 /
The "productions" of this grammar
elaborate upon this archetype by inserting

Source

Chords

Destination

Chords

Passing
Chords

Figure U:

chordal qualities are:
o - diminished.

passing progressions between consecutive
chords, for example:

D7 / @7 /

The form of these productions suggested to
me a tree of finite depth in which the
number of direct "inferiors" to each node
was arbitrarily extensible through
subsidiary linked-list structures. Figure
4 illustrates how this tree is organized.
At the highest level resides a list of
"source" chords; inferior to these
"sources" are subsidiary lists of
"destination" chords; each "destination"
directs the program in turn to a list of
appropriate passing progressions.

CM / Gm C7 / FM

5.0 NETWORKS

Networks (8) are to trees as trees are to
lists. Any node within a network may have
one, two, or more "superiors"; in
addition to this expanded hierarchic
organization, nodes at equivalent levels
(i.e., hierarchic "peers") may also be
linked sequentially.

5.1 A Hierarchic Network

An example of a network in which each node
‘has two superiors appears in the
form-composing program for Transitions.

Tree of passing chordal progressions for Mix or Match.

Abbreviations for

M - major, m - minor, 7 - dominant, and

255

so on (9).

This program first generates an abstract
description of the form as a hierarchy of
sections, subsections, sub-subsections and
Dividing points of this form
are marked by "terminals", with each
terminal assuming one of three
idiosyncratic functions: "origin",
"goal", and "node" (in a different sense
from the normal usage of "node" in this
paper). Figure 5 illustrates
relationships between the first fourteen
terminals of Transitions; each terminal
of the musical structure is represented
within the program by one node of a linked

‘network.

Once this abstract description has been
obtained, the program proceeds to select
attributes for each terminal in such a
manner that the three functions are
expressed through appropriate similarities
and contrasts. This selection process
consists of recursive searches (10) which
begin with terminals of broadest
hierarchic significance and work their way
down through more local relationships,
backtracking whenever they compose
themselves into a corner.

5.2 A Monodic Network
A second example of a network resembles a

linked tree to the extent that each
"inferior" node links vertically to

ICMC ’85 Proceedings

Figure 5:

the attribute-selecting process.
Functions of terminals are abbreviated as follows:

0 - origin, G - goal, N - node.

indicate contrasts.

exactly one "superior". However,
additional sets of links organize nodes
sequentially at each hierarchic level.
Such a network coordinates the three
compositional layers used by the Mix or
Match program to represent a melody:

1) chords, =2) basic melody, and

3) embellished melody. Figure 6a
illustrates these three layers using music
actually composed by the program.

Figure 6b illustrates how the program
represents the three layers depicted in
Figure 6a as a linked network. Vertical
links direct each chord to a subsidiary
list of basic-melody notes; similarly,
each basic-melody note has its own list of
embellished-melody notes. The horizontal

Network of similarities and contrasts in the form of Transitions.

The numbers
at the.top of the figure plot the order in which termlnals are considered by

Arrows indicate similarities; wavy lines

lists detail sequential relationships
within each layer; these independent
lists enable the program to traverse the
basic melody without consulting the
chordal progression or to traverse the
embellished melody without consulting the
basic melody.

5.3 A Polyphonic Network

The most elaborate linked data structure
in all of the Tsukuba composing programs
is the network used for the pitch-
selection stage of Transitions. This
pitch-selecting program gathers the
polyphonic stream of notes described under
heading 3.3 of this paper into "chords" at

Chords
GM Bm Em Am D7
Basic Melody
Oy 1 1 Il]
- = — — —+ = — T —
. & —— — —— o — =z =]
[] 7 L4 &
Embellished Melody -
Ny 1 N ' N N A
s 1 T s o— | T ;i T B o S e o £ A S NN
- » r T T — 1Pt g TNt o o o Ly S e |
T T — r I 1 P T — 1 & —r— & - 3
T] L4 L4 5 + Ld

Figure ba:

ICMC ’85 Proceedings

Compositioﬁal layers in Mix or Match® Abbreviations for chordal qualifies
follow the conventions of Figure %.

256

Chords 1: 2:0 Ia:q . I. ;ol :
. 8 8 8 g 4 4
C =
Basic 1: 1: 4 2: 0} 2: 4 :‘g 3: H i
Melody 4 4 4 4 4 4 4 ..
B4 G4 [F#4)] D4 C4 b4
P P P P P P P
Embellished 1:0] 1:2) 1:4] 1:6 2: 2:2 2: 4 3:1 3;3 3;4 3;5 3:6 c:o 4;1 4:3 4:4 4: 4;5
Melod, 2 2 2 1 2 2 2 1
v C5) B4 A4 G4 G4 F# 4] E: E4| A4 E4] G4 B3 C4| E4| G4 1134 F#4]
A P A P A P P I I A 1 P A P I A P

Figure 6b: Network representation of a Mix or Match tune. Starting times are indicated
by measure number and eighth-note offset; durations are also given in
eighths. Abbreviations for rhythmic functions are: P - primary,

A - appogiatura, and I - incidental.

points of concerted attack. The program
also maintains schedules so that it can
decide in which order the notes of each
chord should be composed. This order is
determined "on the fly" according to
priorities gleaned through heuristic
analysis of the immediately proceeding
chord. For example, if a certain
registral channel contains a dissonance,
then the program acts to resolve this
dissonance before attending to other
channels.

Figure 7 illustrates how the polyphonic
network for Transitions is organized. The
basic structure 1s a "master" list
detailing all of the notes currently in
memory; as the program proceeds through

. the piece, 0ld notes at the head of this

list are continuously being written out in
order to recycle memory for new notes
being appended onto the tail.

Superimposed upon this master list is an
independent "horizontal" structure of
linear lists, one for each registral
channel. "Vertical" structure is provided

1 1 2 [4 5 6 T 9 10 1M 12_ 13 je—a 14

°3 6 10 12 14 20 21 28 30 33 36 42 44

4 7 8 1M 16 19 22 27 32 34 37 40 43

2 9 13 17 18 29 31 38 39 45

4 15 35 41
1

X o5] 96] 24:8 - [E :

Go___] [iz:4] 56] 2859 p—f30:10] aiia
s 5] 31:10 J—pezl—fizin f—
301 Jo—sf6:2 | [11:4" J—f16:5 o{26:8 Jo—s{25:9 Je—sfaa: 11 |-—

Figure 7: Polyphonic network for Transitions.

The blocks in the top row depict

schedules; the remaining blocks depict notes. Of the two numbers in each
note block, the first specifies the note's position in the master note list,
while the second directs the program to a schedule of notes sharing the same
starting time. The topmost number in each scheduling block specifies a
position in the 1list of schedules, while the remaining numbers indicate

pointers to notes.

ICMC 85 Proceedings

by the schedules, which are themselves
organized into an ancillary list.

6.0 CONCLUSION

Linked data structures greatly facilitate
the process of acquiring relevant
information for compositional decisions,
increasing the speed and musical
sensitivity of composing programs.
Properly employed, such structures can
also enable a program to adapt itself to
fluid data requirements, both from moment
to moment during program execution and
from day to day during program development
as compositional input is expanded and
"tuned".

- In combination with heuristic
decision-making algorithms, analytic
feedback, and constrained searches with
" dependency-directed backtracking, linked
data structures have brought composing
programs to a level of sophistication
which equals or surpasses human
capabilities for performing well-defined
tasks such as the ones described in this
paper. The potential inherent in this
technology -- both as an extension of
- human creative processes and as a tool for
understanding these processes -- is
enormous.

NOTES
1. Lejaren Hiller and Charles Ames (text)
with Robert Franki (graphics), "Automated
Composition: An Installation at the 1985
International Exposition in Tsukuba,
Japan'", Perspectives of New Music (in
press).

2. In fact, the language for all these
programs was FORTRAN '77 running under the
VAX-VMS operating system.

ICMC ’85 Proceedings

3. A comprehensive explanation of how

" linked structures are implemented and
" maintained may be found in Donald Knuth's

Fundamental Algorithms,
. iAddison-Wesley, 1973).

258

2nd edition

4, An additional requirement of linear
lists is that no node can succeed itself,
either directly or indirectly. This
requirement eliminates lists which "wrap
around" upon themselves. Similar
restrictions apply to trees and networks.

5. Modifying sequential arrays, by
contrast, requires wholesale transfers of
information.

6. "Registral channel" means the same as
"contrapuntal part"; the term "channel”
comes from Robert Erickson's Sound
Structure in Music (University of
California Press, 1976), pages 117-119.

7. c¢f. Stephen Holtzman, "A Generative
Grammar Definitional Language for Music",
Interface, volume 9, number 1, page 1
1980). The Mix or Match productions were
not recursively implemented; with
hindsight, such an implementation would
not have been difficult.
8. Networks are also called "directed
graphs".

9. cf. Charles Ames, "Crystals:
Recursive structures in automated

composition", Computer Music Journal,
volume 6, number 3 (1982), page L6.
10. cf. Charles Ames, "Notes on

Undulant", Interface, volume 12, number 3
(1983), page 505.

