CHAPTER 14

CONSTRAINED SEARCH

We have seen that many problems encountered in automated
composition may be resolved into a sequence of elementary
'decisions, each of which admits a fairly small number of options.
However, we know from chapter 12 that the number of potential
solutions to such problems grows exponentially with the number of
decisions. Even though it is theoretically possible to find an
optimal solution to any problem using the methods of
comparative search (chapter 12), in practice the requisite
computations may go on for months or even years.

As an alternative to the intensive procedures of comparative

search, this chapter investigates the strategy of constrained

search. Of all the decision-making strategies discussed in this
book, constrained search undoubtedly comes closest to simulating
how human composers actually work. The approach involves
specifying a minimum standard above which any solution is
acceptable. Evaluative criteria are provided not as formulae for
computing relative keys, but rather as constraints. For each

decision, the search steps through potential options, testing for
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violations. Whenever it encounters an option meeting all of the
constraints, the search advances to the next decision; should
the search exhaust all available options, it backtracks, revises
one or more earlier decisions, and tries again.

Because this approach accepts the first complete solution
encountered while rejecting any flawed solution immediately upon
discovering a fault, constrained searches avoid the extended
digressions which are characteristic of comparative sgearches.
Consequently, constrained searches provide a practical mechanism
for solving highly complex problems embracing large numbers of
declisions. The disadvantage of constrained search versus
comparative search 1s that the solutions produced by constrained
searching are merely "acceptable", not optimal. However, it
remalins possible to impose heurisms affecting the schedule of
decisions and the schedule by which the search considers options
for each decision. Such heurisms enable the composer/programmer
to blas a solution toward qualities which, though desirable, do

iy wlies ble )
not it the absodmte status of constraints.

14,1 APPLICATION: PART-WRITING BY CONSTRAINED SEARCH

In order to illustrate the mechanics of a constrained
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search, we shall apply this strategy to a problem of traditional
harmony: finding a six-part C major triad which resolves a
six-part dominant seventh chord on G. TFigure 14-1 depicts a
schedule of parts in this progression along with schedules of
potential resolutions for each pard. The problem divides into
six deéisions, one for each part; each decislon in turn admits
up to three options, expressed in Figure 14-1 as melodic motions.
Notice that decisions 3 and 6 admit only one acceptable option;
_the E4 in part 3 is the only pitch in a C major chord which
resolves F4 downward by a step, while the C3 in part 6 is
necessary to keep the chord in first inversion. In addition to
these constraints implicit in the schedules for parts 3 and 6,

the search imposes four explicit constraints:
1. no two parts may CYross,
2. no two parts may move in consecutive fifths or octaves,
3. the C major chord may contain no more than two G's, and
. the C major chord must contain exactly oné E.

Figure 14-2 chronicles the search for an acceptable C major

chord.
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Figure 14-1: Part-leading schedules - The sequence of
decisions proceeds from top to bottom, while the

8 L\/\E’.A LL.\ < . N .
of options for each decislion proceeds from

left to right.

Figure 14-2: Chronicle of search for an acceptable
resolution - The numbers at the top of each column
refer to the schedules depicted in Figure 14-1. Bold
arrows indicate where one decision holds for multiple
solutions. The parenthetlc number after a comment
indicates the source of conflict with an unacceptable

decision.

We now conslder the effect of heurisms affecting the
schedules of decisions and options. Figure 14-3 depicts an
alternate set of schedules for the same problem detailed above.

It ranks heurisms for scheduling decisions as follows:

1. Number of options - The least flexible decisions (those
with the fewest available options) receive greatest

priority.

2. Urgency: The traditional "urge" for a dissonance to

resolve downward by step is already implicit in the
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restriction that F4 may only resolve to E4. However,
Figure 14-3 also incorporates the less emphatic "urge"

of the leading tone to resolve upward.

3. Prominence: Other factors held equal, Figure 14-3

allots greater priority to the more readily audible

outer parts, at the expense of inner parts.

4, In the event that the preceding three heurisms apply

equally, scheduling of declslons is randomn.
The heurisms used to schedule optiong for each decision were:
1. Tendency: If a part has a tendency (that is, if it
involves a dissonance or a leading tone), the pitch

which resolves this tendency recelves greatest priority.

2. Smoothness of progression: By contrast to Figure

14-1, which simply 1lists pitches of the C major triad
from lowest to highest, Figure 1&—3 favors the smallest

motions.

3. In the event that the preceding two heurisms apply

equally, scheduling of options is random.
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Figure 14-4 chronicles a search proceeding according to these
revised schedules. It is clear that,while the complete solution
selected by both searches are identlical, the effort invested in
scheduling decisions pays off igwégbreased searching time.
Notice, however, that the decision to lead the B4 upward in
Figure 14-4 occurs directly. By contrast, it is simply an

accident of circumstance that caused the previous search to take

this step.

Figure 14-3: Revised part-leading schedules - The
sequence of decisions proceeds from top to bottom,
'.'x\ma[ Lu\ 2

while the sesmemce of options for each decision

proceeds from left to right.

Figure 14-4: Chronicle of search for an acceptable
resolution - The numbers at the top of each column
refer to the schedules depicted in Figure 14-3. Bold
arrows indicate where one decision holds for multiple
solutions. The parenthetic number after a comment
indicates the source of conflict with an unacceptable

decision.
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14.2 TIMPLEMENTATION

A fully general constrained search is a paradigm of%gﬁapter
10 has designated "horizontal" recursion. Interpreted in this
way, the recursive "level” fégzééﬁés the current declsion --
ybeither directly or through a schedule -- while the process
terminates when it reaches the goal of selecting #ﬂ acceptable
options for every decision. The basic strategy generalizes the
approach taken by subroutines PARTS, EVAL, and LEGAL of progran
DEMO7 (heading 9.3.2), which implement most of the relevant
procedures with the exception of backtracking. Remember that
PARTS failed irrecoverably when none of the eight pitches
scheduled by EVAL for any given decision satisfied all of LEGAL's
constraints. Backtracking enables a search to recover from such
failures.

Since backtracking requires the capabllity to take up where
a search has left off in an earlier schedule, it is necessary to

keep track of the following information for each decision:

1. the schedule of options,

2. an index to the current option under consideration, and
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(48

3. any ancillary data assoclated with ®hereuprrens decision.

“ Fufosmmwu~
Program SEARCH illustrates how eme might implement a constrained
axed s
search with backtracking. The parameter MDEC }%ves the number of
N\A\\{ ’\"\,(’ C¥ (\R?C“'S&l(vv\$ Wg\‘(lqg l\(/\
decisions, whese schedule Ie—previded-by the integer array
“The :Vi v \DJ/\AP\E .l‘)XDeC/ (lt’,*‘é,vv\/\kv&&’s ‘H/\Q ‘Q;\)e_i O‘?' Ve Cclwvy \‘C\A:',

DECIDX.Y Arrdy element DECIDX(IDXDEC) holds the current decision,
which SEARCH transfers to the holding variable IDEC for increased

efficiency. Array element LIMDEC(I) holds the number of options

N
oL ephens

for the Ith decision. Individual schedules‘reside in the
two-dimensional integer array OPTIDX, which allows up tQ.MOPT
elements per decision? Array element IDXOPT(IDEC) pﬁgigg%s an
index to the current position in this schedule, while array
element OPTIDX(IDXOPT(IDEC),IDEC) holds the option itself. The
integer array OPTDEC stores selected options for each decision;

the ez e .
to determine the current partial solution, must consult array
elements OPTDEC(DECIDX(I)) for I=1,...,IDXDEC.

A call to a hypothetical subroutine ORDER (line 7)
establishes the schedule of decisions. Subroutine EVAL (lines 13
and 29) determines individual schedules of optlons 'on the fly'
each time the search advances to a new decislon. The nature of
ORDER and EVAL will vary with the application, though subroutine
EVAL of program DEMO7 is representative; these subroutines may
be dispensed with when schedules are %fgtgﬁed manually. The

logical function LEGAL (called from line 20) determines whether
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or not a newly-selected option is acceptable; like ORDER and
EVAL, LEGAL will vary with the application, function LEGAL of

program DEMO7 1is representative.

-- Programmine example 14-1: program SEARCH --

14.2.1 Dependency-Dirscted Backtracking

w hedewes ‘H/\ MRLZ o b \“L"L-—'i\(/»t”&?
E VNG CTLY
N / \ 73X

A deficilency in SEARCH arises from the fact that ' the program
simply backtracks t?mimmediately preceding declsion. As a
result, SEARCH must grope its way backward along the schedule of
decisions until it locates the cause of an impasse. TFor example,
suppose SEARCH had attempted the search illustrated in Figure
14-2. Upon encountering the first conflict depicted in that

Figure ("Too many E's", in the uppermost row), SEARCH would

determine that all (one) of the options available to decision 3

SEpReH wiculd
had been exhausted)andvin consequence weudd backtirack to decision
The A
2. Eg would then substitute a C5 for the G4 in decision 2 and

return to decision 3. Since this action would not effect the
number of E's in the chord, the impasse at decision 3 would still
remain. Back to decision 2 again. SEARCH would now attempt the

third option in decision 2's schedule, E5, only to run up against
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the same constraint, "Too many E's". Only then would SEARCH
backtrack to revise decision 1, which caused the problem in the

first place by selecting an E.

14.2.1.1 An Expedient lMethod - The search actually depicted in
drshened

Figure 14-2 incorporates a feature -csasked "dependency-directed

backtracking" by Stallman and Sussman, who first describe the

problem (1977). A simple though non-rigorous implementation of

dependency-directed backtracking involves simply determining the

most recent source of conflict for each decision. Program SEARCH

can perform such a determination with the following

modifications:

1. Declare an integer array called BAKIDX of dimension MDEC

in order to keep track of conflicts,

2. Since SEARCH has yet to encounter any sources of
conflict at the onset of new decisions (that is, after

lines 14 and 30), have it set BAKIDX(IDXDEC) to zero at

these polnts.

3. In place of the loglcal function LEGAL (line 20),
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substitute a new function ISOURC which tests the current
option against each constraint and returns either 0 (no
conflict) or a positive integer locating the earliest
decision which is incompatible with the current option.
Store the result of ISOURC in the holding varlable IBAK
and select whichever of the following branches is

applicable:

a. If IBAK is zero, then SEARCH proceeds as 1f LEGAL

had returned .true. (by executing lines 21-31);

b. otherwise, SEARCH sets BAKIDX(IDXDEC) =
max0(BAKIDX (IDXDEC),IBAK). This second branch
insures that if an impasse arises for the current
decision, then SEARCH will backtrack only the
minimal number of decisions required to break this

impasse.

The actual process of backtracking reduces to setting
IDXDEC=BAKDEC (IDXDEC). However, if the decision-making
process involves cumulative feedback or maintains some
other data which is not held 'frozen' for each decision,
then it will be necessary to work back

decision-by-decision, cancelling out intermediate
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computations.

The programs used to generate Demonstration 11 (described later
in this chapter) illustrate variations upon this expedient method

of backtracking.

14.2.1.2 A Rigorous Method - The mechanism just described 1s
“simple to implement and highly effective for most applications.
However, if it has to backtrack several times in a row (that is,
if upon reaching an impasse?piﬁé search backtracks to the most
recent source of conflict only to encounter another impasse, and
so on), then the mechanism tends to loose track of the original

impasse. Consider the sources of conflict indicated below:

Sources of
Decision Conflict
none
1
none
2
4

3
6,

1
5

~ O\ WD e

Suppose the search reaches an impasse at decision 7. It will

then backtrack to decision 6, since this decision is the most
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recent source of conflict. Suppose, however, that all of the
options avallable to decision 6 have themselves been exhausted.
The expedient mechanism described above will then cause the
search to backtrack to the most recent conflict with decision

6, which is decision 3. In the process, the mechanism has lost
touch with the original impasse, which might also have been
broken by revising decision 5, at much less waste of effort.

In order to insure a mechanism rigorous enough to keep track

of the original impasse, 1t 1s necessary for the program to

assemble a complete list of conflicts for each decision. From

these lists, the program in turn derives a backtracking
schedule as follows: Initially, the schedule 1is empty.
Whenever the search reaches an impasse, the computer merges the

current list of conflicts into the backtracking schedule.
(\ vy &M e,i

.

(Duplicate conflicts are igmered.) The search then backtracks to
the most recent conflict on the schedule.

A variety of information structures may be used to implement
comprehensive backtracking. If sufficient memory is available,
it may be most expedient to store the lists of conflicts in a
two-dimensional array indexed by decision and option.
Alternately, a one-dimensional array may stofe pointers to linked
lists. This alternative is recommended only when the number of
decisions 1s large and the average'number of conflicts per

decision remains well under half the number of options, since
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each node in the linked list requires two elements, a value and a
link. A linked-list structure is recommended for the
backtracking schedule itself, since this schedule must accomodate

frequent insertions and deletions of items.

14,2.2 Prescience

This chapter has used the word "impasse" to designate
situations in which a search attempts to make a declsion, but
discovers that all of the available options are in some sense
unacceptable. In such situations, an option must fall into one

of two categories:

1. Options which are immediately found unacceptable -aither-
Q(* A/
by the constraints implemented ih function LEGAL or

function ISOURC, or

2. Options which currently seem to be acceptable, but which
propigate unresolvable conflicts at later points in the

search.

An example of the latter category of unacceptable option is the
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E5 considered for the first decision (the uppermost part) in

.
5
PO

Figure 14-2. It - intuitivedy that if one

(implicit) constraint requires the third-from-uppermost part to
resolve F4 to E4 while another (explicit) constraint states "the
C major chord must contain exactly one E", then the search is
going to run into problems if it tries to select L5 for the
uppermost part. Unfortunately, this information has not been
communicated to the scarch of Figure 14-2, which blithely
attempts to use E5 anyway.

B For all the help which backtracking provides in recovering
from fruitless digressions, the quickest way out is often to
forsee such digressions and avoid them in the first place. For
example, rather than saying "the C major chord mnust contain
exactly one E", one could instead say "only the
third-from-uppermost part may contain an E".

Such prescience must often be incorporated at the expense

of generality, though not always. As another example, consider
the simple problem of composing an arpeggio. Assume that there
are ten attacks for the program to place within eight consecutive
beats given two constraints: 1) each beat should contain at
least one attack, and 2) no beat should have more than two

(simultaneous) attacks. An unprescient way of coding the first

constraint would be walt until all of the attacks had been usecd

up, then check through the arpeggio to see 1f any holes remain.
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A better way would be to keep tallies both of the number of empty
beats and the number of unplaced attacks and to ask the following
question each time the search attempted to double up attacks:
"[Jill there still be sufficient unplaced attacks left to fill up

the remaining empty beats?"

14.3 CONSTRAINED SEARCHES IN AUTOMATED COIPOSITION

The strateey of solving compositional problems by searchin
g e g

was used as early as the Illiac Suite (1957). In attempting to

process streams of randomly generated notes through a "sieve" of
stylistic rules, Hiller and Isaacson very dquickly noted that

", ..with the addition of more rules, the probability of obtaining

a successfulvpiece of music would soon become very small". This
problem led to their incorporation of a "try-again method” which
allowed the Illiac to regenerate a note whenever it was

confronted with a violation. This method was limited to retries

on specific decisions only,gzékfacked ia,efficiency)ggggﬁgéﬁib Vﬂwhfs o
provision wwsamade to restrain the Illiac from retrying notes
whichﬂig?aggyélready re jected.

An article by Stanley Gill (1968) describes an approach used

by Gill to compose a short piece entitled Variations on a Themne
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by Berg. Though Gill does describe explicit procedures, it is
evident from his tree-graph of the decision-making process that
Gill's program was capable of backtracking to earlier decisions
whenever it ran out of options.

0f Larry Polansky's Four Voice Canons, numbers 2 (1975)

and 3 (1976) were both written using computer programs which

incorporate backtracking. The Four Voice Canons are based on

serieg of values used to determine musical attributes such as
pitch, duration, envelope, and varlous other aspects of timbre.
The number of values in each series varies frowm canon to canon.
Polansky's programs generated lists of permutations of this

series conforming to two constraints:

1. any permutation is derived from its predecessor in the
list through the exchange of two elements; for example,
the first and last elements of the five-note seriles

"ABCDE" may be exchanged to obtain "EBCDA", and

2. every possible permutation occurs exactly three times in

the list.

Polansky derived lists for each musical attribute to produce a
Sequence of notes, and then overlaild the resultant sequence with

itself for times to produce his canons.
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Kemal Ebcioglu has implemented constrained searches as means
for testing the dictums of traditional contrapuntal theory. His
1980 paper describes a program for generating a single
counterpoint against a cantus firmus, subject to rules provided
by the user. In more recent work, Ebcioglu has developed
programs which accept a chorale melody and attempt to compose
four-part homophony in the style of J.S. Bach. His results have
been impressive, duplicating Bach's own harmonization exactly in
more than one instance.

Constrained search has become the primary technique used by
Charles Ames. To compose Gradient for solo piano (1982), Ames
used constrained searches to compose a progression of six-part
chords and subsequently to arpeggiate each chord. With
Undulant for seven instruments (1983) Ames implemented
constrained searches capable of scheduling options "on the fly"
Tfor cach declsion, based on cumulative feedback. He also
introduced a linked information structure capable of representing

contrapuntal textures of arbitrary complexity (note 1).

14,4 DEMONSTRATION 11: CONSTRAINED SEARCH

Demonstration 11 illustrates the use of constrained searches
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in a full-fledged composing program. The composition produced by
this program is a study in what Robert Erickson (1975) terms
"perceptual channeling", that is, the mechanism by which
listeners percelve disjoint musical events as components of an
ongoing process, or "channel". In Demonstration 11, the major
factor contributing to channeling is register, although the fact
that each pitch constantly assoclates with a fixed group of

partners also plays an important role.

14.4.1 Compositional Directives

The compositional process divides into four stages of

productlon:

1. Stage I: Material - composing the eight 'cells'

depicted in Figure 14-6;

2. Stage II: Form - selecting material for each segment

in order to determine the compositional profile depicted

in Figure 14-7;

3. Stage III: Rhythm - composing rhythm and selecting
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cells for each note; and

4, Stage IV: Pitch -~ selecting inflections for each note.

ke Fwssu:i %Mea—ﬂ wduces
As happened in Demonstration 10, the form of Demonstration 11 T=.
Adoded from the 'bottom up' imABtage<Ed on the basis of
qualities inherent in material composed‘?éiéggag%yvﬁﬁystage I.
Information from Stage II enables Stage III to describe all of
_the notes in the piece to the extent of rhythms and cell numbers;
Stage IV completes the process by filling in inflections. The

final product appears in Figure 14-9,

14.4,1.1 Stage I: Material ~ Figure 14-6 depicts the material

N -
ece

of the we?k, which consists of eight melodic cells. Each cell
consists of three 'inflections' of a register: low, middle and
high; these 'inflections' are realized by chromatic pitches
spaced no farther apart than a whole tone. The material has the

following properties:

1. each cell consists of two melodic steps, where a step

may be either a semitone or a whole tone,
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2. of the four intervallic structures possible given the
preceding constraint, each structure appears exactly

twice,
3. no two cells overlap,

L, no degree of the chromatic scale appears more than twice

in all the material, and

5. no two cells share more than one common chromatic

degree.

Figure 14-6: Material for Demonstration 11 - Curved
brackets indicate semitones; square brackets indicate

whole tones.

14.4,1.2 Stage II: Form - The“%é;;~consists of 18 segments.
Eight segments draw material from one cell only; five segments
draw material from two cells simultaneously; three segments draw
material from three cells; and the remaining two draw material
from four cells at once. Since the effect is of "implied

counterpoint", it will be appropriate to use the word 'part' to
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distinguish between cells simultaneously exploited in a single
segment and also to refer to the various segments as 'solos',
'duets', 'trios', and 'quartets', depending on the number of

parts involved.

Figure 14-7: Profile of Demonstration 11 - Segment
durations, numbers of simultaneous cells) and average
periods were specified manually by the author; -tie
cellular content of each segment was composed by
computer.

G
The constraints governing selection of cells Pov ok

segment; are:

1. No two solos, duets, trios, or gquartets may share an
identical configuration of cells; nelther may two
quartets share more than two cells. This constraint

insures a diversity of segments.

2. Two cells in adjacent registers may not occur in the
same segment if their closest inflections lie within a
minor third. This constraint inhibits 'cross

channeling' between registrally adjacent cells.
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3. A solo may not explolt any cell appearing in the
immediately preceding segment; duets, trios, and
quartets must share at least one cell with their
immediate predecessor if the number of parts remalns the
same or increases. These constraints serve to provide a

'dovetalling' effect between consecutive segments.

14.4,1.3 Stage III: Rhythm - Stage III of the composing process

selects periods between consecutive attacks by direct random

LW tefd (e

selection using an exponential distribution me 3 By John

Myhill's procedures (heading 4.4.2.1) so that the ratio of
maximum to minimum durations is 8.0. Figure 14-7 details the
average period between attacks for each segment. Notice that
this average decreases (equivalently, the density of notes
increases) as amount of available material rises.

The program selects cells using random selection with
cumulative feedback (heading 7.2). This procedure allows
unpredictable short-term cholces while balancing cell-usage
balances out over the long-term.

Articulation is sensitive to whether or not a note's

successor shares the same cell:
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If two consecutive notes share the same cell, then the
program acknowledges this relationship by indicating
either that the pair should be slurred or that the
successor should be tongued with no intervening rest.
This decision is conducted by Bernoulll trial (heading
L.4.1.1); the more parts occuring in a segment, the

greater the likelihood that the pair will be slurred.

If two consecutive notes exploit different cells, then
program acknowledges this difference by insisting that
the successor always be tongued. A Bernoulli trial with
50% probability of success decides whether or not the

program inserts an intervening sixteenth rest.

1b,4,1.4 Stage IV: Pitch - The final stage of the composing

process selects for each note in the composition which of the

three
Stage
these

order

registral inflections available to the cell specified in
IIT will provide the pitch. The program attempts to keep
inflections in balance by employing cumulative feedback in

to favor the least-used inflection of any cell. It also

forbids any cell from repeating an inflection without in the
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e cells

meantime stating at least one of ¥ two alternate inflections.
Since the type of harmonic connections suggested py
inter-cell consonances would contradict the centralrmah&&gfjthe
piece, the pitches in Demonstration 11 adhere to a dissonant
style. As a minimum precaution against ‘cross—channelinga, the
pitch-selecting program avoids virtual octaves; that 1is, when
one cell plays a chromatic degree shared by a second cell, at
least one of the two cells must play a different degree before
the second cell may use the'shared degree. In addition,
éonsecutive notes must obey the stylistic matrix illustrated in
Figure 14-8. Unlike stylistic constraints employed for
Demonstrations 6, 7, and 8, the program skips over chromatic
identities in order to apply this matrix to the first two

distinct degrees immediately preceding the current note.

Figure 14—8: Stylistic matrix for Demonstration 11.
Columns indicate 'current' chromatic intervals, given
the '‘most recent interval indicated by the row.
Non-blank entries show hcceptablé intervallic

sequences.

Figure 14-9: Transcription of Demonstration 11.



) ) L) L) L]
-3 = < X ’ k < ky F k P b 4 b‘ 4 = ' =X r
hﬂ ‘v l ﬂ'ln uﬂ
L L) L] L) $ [ ) 1 ]

lm_ b 4 9 4 [ L
51 \l i bt 3-8 8.

.1 .1 .1 8.1 A X
4 1 1 L [ L
A .

L [ A L q L L

[ [ [ 4 [ [
N H.W N HOHn
% B} . -
[ 3 [ 3 A ]
i } X
[1§ [ [ [ s [ [ [ [ [
' 4 il _ 1 ! 'Y 4
H hw ) m“n 1.8 Mﬂ
X N N
[ ( [ ﬁ..
u“n. N uwﬁ
. I U
1.4 h A
9 4 9 n.v L L
3 [ [y [} \
u“n hu . uw‘u "Mﬂ
umn u% hﬂ u“n ﬂﬁn uun u“n
\ [ 1 L e [ {
N ) N 5
= Cadd
N N N N N N N
3 o { [ [ r
.3 3 L3 A 5N LY
K TP R N MR hER P TR R R Wb

|



I4-25%,

=

Charles AMES

gt

Wy

113y

Demonstration Il
z

o~

=
—

ry

e

]
mf
-

97

Clarinet
STRICTLY J = 80,

jmnara

Ry

Il

g @R fR L)

" N

g

2
-

-
tF -
=
r

=3
r ll 1 1
\Jt
N bisf‘élb-

T
i
Tt
113
i
T 1
1 1 -
1 1
1 1
P
1
.-

>

n

LT a0 P4
L4 dbad

\.——/

g

e
1

e

{ TN | Nl b

SRS N W

.-
1
L8}
X
Y7~
pe-bae

. _ad

i
i Ul TE b 1 W “
Ri: 1) C a1 . m
I i @ it . (ot ™
. B33 =H

&
4
TN T o

4\J S’
»
T
-+
Ok
-
14 LA
g
.
—
(© Charles Ames 1984

196~ .

\_/ g
I‘J”
=
e
_"l‘_-l
-
.
i,

F

feTe
|
fo’
279

T
1
1
1
-
-~
11
.
|
I P ~ )
"
T
g
3
11 llAlP
1
1
E::
./

dl

1
+9
et §
1
1
=
~~
-
Y
e

[P

T
=3
I.bd-'l,
;-

e
T

) —
s
T—4
-4
T
-
1 1
_‘_‘b‘rv =
£ 4o
H % I i
T
}_.
1 1
1
\——b:#-/
L S
o N
P
22 SN
=3
a! E
e a—
&

1
1
~

)
\

H
3
i i
3‘ ‘
S/
—
T
t
T
L~
o o — i
pere
Y
+
i1
LA G 4 Ls ive
b
i
4
-
~
1.7

—~te
3
-»-
1

2N
>
}
14
£
.
— 17
”i
L
1
1.l
[
-t

[ § an Y
o o
™ 28
i
e
025 2
-
T v
o
37
N Sl
n43
A4 11 i P
ﬁ == [

» 4
¥ 4%
A3
AN2v.4
Y
0N
ANAY4




14-15¢

program DEMO11

1
2 c
3 Cc Demonstration of constrained search
4q [of
5 parameter (MCEL=8,MPRT=35,MSEG=18)
6 integer NUMSEG(O:MSEG),LIMSEG(0:MSEG),DURSEG(MSEG),CELPRT(MPRT)
7 real CUMCEL {MCEL ) , INCSEG (MSEG)
8 common CUMCEL ,NUMSEG,LIMSEG,DURSEG, INCSEG, CELPRT
9 c
10 "IPRT = 0
11 LIMSEG(0) = IPRT
12 do (ISEG=1,MSEG)
13 IPRT = IPRT + NUMSEG(ISEG)
14 LIMSEG(ISEG) = IPRT
15 INCSEG({ISEG) = fFloat{DURSEG(ISEG))/Floast(NUMSEG(ISEG)})
16 repeat
17 call FORM
; 18 call RAHYTHM
H 19 stop

20 end
4 subroutine FORM
2 parameter (MCEL=8,MPRT=35,MSEG=18)
3 integer NUMSEG(O:MSEG),LIMSEG{0:MSEG),DURSEG(MSEG),CELPRT(MPRT)
q 1nteger BAKSEG(MSEG]), IDXCEL(MFHT) CELIDX(MCEL MSEG),
5 ILGCEL (MCEL, MCEL)
6 1ngical LEGCEL (MCEL ,MCEL ), OKAY
7 real CUMCEL(MCEL) INCSEG(MSEG)
8 real FUZCEL (MCEL)
9 equivalence (ILGCEL ,LEGCEL)
10 common CUMCEL ,NUMSEG,L.IMSEG,DURSEG, INCSEG,CELPRT
11 data ILGCEL / O, O0,-1,-1,-1,-1,-1,-1,
12 H 0, 0, 0,-1,-1,-1,-1,-1,
13 H -1, 0, 0,-1,-1,-1,-1,-1,
14 H ~1,~-1,~-1, 0, O,-1,~1,-1,
15 H -1,-1,-1, 0, 0,-1,~-1,-1,
16 H -1y~1,-1,-1,-4, 0, O0,-1,
17 H -1,-1,-1,-1,-1, 0, 0, O,

_ 18 : -1,-1,-1,~1,-1,-1, 0, 0O/

i 19 c
20 c Initialization
21 do (ICEL=1,MCEL)
2e CUMCEL(ICEL) = 0.0
23 do (ISEG=1,MSEG)
24 CELIDX(ICEL,ISEG) = ICEL .
25 repeat
26 repeat
a7 c
28 c Search for acceptable arrangement of cells
29 ISEG = 1 .
30 NUM = NUMSEG(ISEG)
31 LIMO = LIMSEG(ISEG-1)
32 LIM4 = LIMSEG(ISEG)
33 IPRT = 14
34 LCEL = MCEL - NUM + 1
35 BAKSEG(ISEG) = ©
36 IDXCEL(IPRT) = O
37 c Schedule cells for first segment
38 call FUZZY(CELIDX{1,ISEG),CUMCEL,FUZCEL,1.0,MCEL)
39 do
40 I = IDXCEL(IPRT) + 1
41 if {(I.le.LCEL) then
42 IDXCEL{IPRT) = I
43 ICEL = CELIDX(I,ISEG)
44 CELPRT(IPAT) = ICEL
45 Cc Constraints:
46 OKAY = .true.
47 IBAK = ISEG
48 c No duplicate segments; four-part segments may not share
49 c more thean two cells
50 if (IPAT.eq.LIM1) then
51 do (I5=1,I5EG-1)
52 if (NUMSEG(IS).eq.NUM) then
83 : . K =0 N
54 IP = LIMD
55 do
56 IP = IP + 1
57 IC = CELPRT(IFP)
58 LP = LIMSEG{IS-1)
59 do (NUM times)
60 LP = LP + 1
61 if (IC.eq.CELPRT(LP}) then
62 K=K+ 1
63 ) . cexit
64 end if
65 repeat
66 if (IP.eq.LIM1) exit
67 repeat
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DEMD11.FOR : Page 2
68 if (K.eq.NUM .or. K.ge.3) then

69 DKAY = .false.

70 IBAK = IS

71 exit

72 end if

73 end if

74 repeat

75 end if

76 c Test for unacceptaeble pair of cells in same segment
77 IP = LIMO :

78 do

79 . IP = IP + 4

80 if (IP.eq.IPRT) exit

81 if (.not.LEGCEL(CELPRT(IP),ICEL)} then

a2 -OKAY = .false.

83 exit

84 end if

85 repeat

86 [ Count number of cells shared with preceding segment
a7z if (IPRT.eq.LIM1) then

a8 N = NUMSEG(ISEG-1)

8g K =10

a0 IP = LIMO

91 do

g2 IP = IP + 1

93 IC = CELPAT(IP) .
aq LP = LIMSEG(ISEG-2)

a9s do (N times)

96 ) LP = LP + 1 .

g7 if (IC.eq.CELPRT(LP)) then

98 K=K + 1

89 exit

100 end if

101 repeat

102 if (IP.eq.IPRT) exit

! 103 repeat

104 c Solo may not share cell

105 if (NUM.eqg.1) then

106 if (K.gt.0) then

107 OKAY = .false,

108 IBAK = minO(IBAK,ISEG-1)

109 end if

110 else if (NUM.ge.NUMSEG(ISEG-1) .and. K.ne.1) then
111 Cc Other segments must share one cell if number of cells stays the
112 c same or increases

113 OKAY = .false.

114 IBAK = minO(IBAK,ISEG-1)

115 end if

116 end if

117 c Accept or reject this cell

118 if (OKAY) then

119 [of Cell is acceptable For this part

120 CUMCEL(ICEL) = CUMCEL(ICEL)} + INCSEG(ISEG)

121 c Advance to next part

122 IPRT = IPRT + 1

123 if (IPRT.gt.LIM1) then f
124 c Advance to next segment

125 "ISEG = ISEG + 1

126 if (ISEG.gt.MSEG) return

127 NUM = NUMSEG(ISEG)

128 LIMO = LIMSEG(ISEG-1)

129 LIM1 = LIMSEG(ISEG)

130 LCEL. = MCEL - NUM + 1

131 IOXCEL(IPAT) = O

132 BAKSEG(ISEG) = O

133 c Schedule cells for mext segment

134 . call FUZZY(CELIDX(1,ISEG),CUMCEL ,FUZCEL,1.0,MCEL)
135 else

136 LCEL = LGEL + 1

137 IDXCEL(IPAT) = IDXCEL(IPRT-1)

138 end if

139 else :

140 [ Cell is not acceptable for this part

141 BAKSEG(ISEG) = max0(BAKSEG(ISEG),IBAK)

142 end if
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143
144
145
148
147
148
149
150
151
152
153
154
155
156
157
158
159
160

aoon

Page 3

else
Cells exhausted: Backtrack to preceding part
if (IPAT-1.1e.LIMO)} then
Combinations exhausted: Backtreck to most recent conflict
IBAK = BAKSEG(ISEG)
if (IBAK.lt.1) stop 'Unsuccessful search.'
do
IPRT = IPRT - 1
if (IPRT.le.LIMO) then
ISEG = ISEG - 1
NUM = NUMSEG(ISEG)
LIMO = LIMSEG(ISEG-1)
LIM1 = LIMSEG({ISEG)
end if
ICEL = CELPRT(IPRT)
CUMCEL(ICEL) = CUMCEL(ICEL) - INCSEG(ISEG)
if (ISEG.eq.IBAK) exit
repeat
LCEL = MCEL - NUM + 1
else
IPRT = IPRT - 1
ICEL = CELPRT{IPRT)
CUMCEL(ICEL) = CUMCEL(ICEL) - INCSEG(ISEG)
LCEL = LCEL - 1
end if
end if
repeat
end

subroutine AHYTHM

parameter (MCEL=8 ,MPRT=35,MSEG=18,MNUM=4)

integer NUMSEG(O0:MSEG),LIMSEG{0:MSEG),DURSEG(MSEG),CELPRT(MPRAT)
real CUMCEL (MCEL )}, INCSEG (MSEG)

real INCCEL (MCEL },AVGNUM{MNUM) , ARTIC(MNUM)

logical SUCCES

common CUMCEL ,NUMSEG,LIMSEG,DURSEG, INCSEG,CELPRT

data AVGNUM/3.0,2.5,2.2,1.7/,ARTIC/.5,.66,.8,1./

data HUGE/10000000.0/

Initialize
open (2,fFile='DEMO11.RHY' ,status='NEW')
Increments for cumulative feedback in selecting cells for notes
determined by cell-usages accumulated in FORAM; likelihood of
selecting least-used cell is 3 times smallest increment
SUM = 0.
OFFSET = HUGE
do (ICEL=1,MCEL)
C = CUMCEL(ICEL)
SUM = SUM + C
INCCEL(ICEL) = C
OFFSET = amin1(OFFSET,C)
CUMCEL{ICEL) = O.
repeat
OFFSET = OFFSET % 3.0
SUM = SUM / float(MCEL)
Compose rhythm and select cell-numbers for each note
ITIME = O
KTIME = O
REMAIN = 0.
LIM1T = O
do (ISEG=1,MSEG)
NUM = NUMSEG(ISEG)
LIMO = LIM1
LIM1 = LIMSEG(ISEG)
KTIME = KTIME + OURSEG(ISEG)
AVGPER = AVGNUM{NUM)
do
Select current period
PER = RANX(AVGPER,8.0) + RAEMAIN
IPER = max0(41,PER+0.5)
REMAIN = PER - Float(IPER])
Determine largest cumulative statistic for cells in this segment

T = 0.

CMAX = O.
IPRT = LIMO
do

IPRT = IPRT + 1

C = CUMCEL{CELPRT(IPAT))

T=T+¢C

CMAX = amax1(CMAX,C]}

if (IPRT.eq.LIM1) exit
repeat

oy s rk.,.
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54 [ Select a cell for current note
55 R = RANF() % (float(NUM)*(CMAX+OFFSET)-T)
56 IPRT = LIMO
57 do
58 IPRT = IPRT + 1
58 ’ ICEL. = CELPRT(IPRAT)
60 W = CMAX - CUMCEL(ICEL) + OFFSET
61 if {A.le.W) exit
62 A=A -W
63 ' if (IPRT.eq.LIM1) exit
64 repeat
65 CUMCEL (ICEL) = CUMCEL(ICEL) + Float{IPER)*INCCEL (ICEL)
66 c Articulate preceding note
67 if (ITIME.gt.O0) then
68 IDUR1Y = IPER1
69 if (ICEL.eq.ICEL1) then :
70 if (SUCCES(ARTIC{NUM1})) IDUR1 = IDUR1 + 1
71 else
72 if (IPERY.gt.1 .end. SUCCES{0.5)) IDUR1 = IDUR1 - 1
73 end if
74 write (2,100) ITIME1,IPER4,IDURY,ICEL4,ISEG1
75 100 format (SIS)
76 end if
77 ITIMEY = ITIME
78 IPER1 = IPER
78 ICELL1 = ICEL
80 ISEG1 = ISEG
81 NUM1 = NUM
a2 Cc
83 c Advance to next note
84 ITIME = ITIME + IPER
85 if (ITIME.ge.KTIME) exit
86 repeat
87 c Subtract expected cumulative sum for each cell used in this segment
88 IPRT = LLIMO
83 do (NUM times)
S0 IPRT = IPRT + 1
91 ICEL = CELPRT(IPRT) o
92 CUMCEL (ICEL) = CUMCEL{ICEL) - SUM*INCSEG(ISEG)
a3 repeat
84 repeat
95 write (2,100) ITIME1,IPER1,IPER1,ICEL1, ISEG1
=13 write (2,100) -1,-1,-1,-1,-1
97 close (2)
98 return
89 end
1 block data
2 parameter (MCEL=8,MPRT=35,MSEG=18)
3 integer NUMSEG(O:MSEG),LIMSEG(O:MSEG),DUHSEG[MSEG),CELPHT(MPHT)
4 real CUMCEL (MCEL ), INCSEG (MSEG)
s common  CUMCEL ,NUMSEG,LIMSEG,DURSEG, INCSEG, CELFRT
6 deta NUMSEG/0,1,1,2,1,2,2,3,1,3,1,2,4,1,1,2,3,1,4/
7 datas DURSEG/25,25,31,25,32,31,40,25,40,
8 : 25,31,50,25,25,31,40,25,50/
=] end

L TS
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DEMO11.FOR Page 5
1 program PITCH
2 parameter {MCEL=8,MNFL=3,MQUE=50)
3 integer HEAD,TAIL, OLDCEL(MCEL),
4 H TIMQUE(MQUE) PERQUE (MQUE ) , DURQUE (MQUE ) , CELQUE(MQUE) ,
5 H SEGQUE (MQUE ) , OLDQUE (MQUE ) , NEWQUE (MQUE ) ,CNTQUE{MQUE) ,
6 : DEGQUE (MQUE) ,NFLQUE (MQUE)
7 1ntegar BAKQUE {MQUE ) , IDXNFL (MGUE) ,NFLIDX{MNFL ,MQUE),
8 DEGNFL {MNFL , MCEL) CUMNFL(MNFL MCEL), IGLTVL(11 11)
=] loglcal LGLTVL(11, 11)
10 equivalence (LGLTVL IGLTVL)
14 common HEAD,TAIL,IQUE,ICNT,LIM,OLDCEL,
12 : TIMQUE ,PERQUE , DUAQUE , CEL.QUE ,SEGQUE, OLOQUE ,NEWQUE ,CNTQUE,
13 : DEGQUE ,NFLOQUE
14 data IGLTVL/~1,~-1,~1,-1,-1,-1,-1,-1,-1,-1, 0,
15 H -4y~1, 0,-4, 0,-1, 0,-1,-1, 0,-1,
16 H -4, 0,-1, 0, 0,-4, 0,-1, 0,-1,-1,
17 : -4,~-1, 0, 0, O0,-14,-1, 0,-1,-1,-1,
18 t -1, 0, 0, 0O, O,-1, O,-4, 0, O,-1,
19 : -ty=1y=-1,=-1,-1, 0,-1,-1,-1,-1,-1,
20 : -4, 0, 0,-1, 0,-1, 0, O, 0, O,-
21 : -4,-1,-1, 0,-1,-1, 0, 0, 0,-1,-1,
22 : ~4,-1, 0,-4, 0, O, O, 0,-1, 0,-1,
23 3 -1, 0,-1,-1, 0,-1, 0,-1, 0,-1,-1,
24 H “t,=1,=1,-1,-1,-1,-1,-1,-1,-1,-1/
25 data DEGNFL/ 5, 7, 8, 9,14, 1, 2, 3, 4, 7, 9,10,
26 : 12, 1, 3, 6, 8,10,11,12, 2, 4, 5, 6/
a7 [
28 open (2,File='DEMD11.RHY',status='0LD"')
29 open (3,File='DEMDO11.0DAT',status="NEW') :
30 c
31 do (ICEL=1,MCEL)
32 do (INFL=1,MNFL)
33 CUMNFL(INFL,ICEL) = O
34 repeat
. 35 repeat
. 36 do (IQUE=1,MQUE)
37 do {INFL=1,MNFL)
J8 NFLIDX({INFL,IQUE) = INFL
38 repeat
a0 repeat
a1 c
a2 HEAD = MQUE
43 TAIL = 1
44 IQUE = 1
45 ICNT = 1
46 LIM = 1
47 call ANOTE
48 ICEL = CELQUE(IQUE)
49 call SHUFLE(NFLIDX(1,IQUE),MNFL)
50 call ISORT(NFLIDX{1, IQUE) CUMNFL(1 ICEL) MNFL.)
514 BAKQUE(IQUE) = 0O
52 IOXNFL{IQUE) = O
53 do .
54 I = IDXNFL(IQUE) + 1
55 if (I.le.MNFL) then
56 IDXNFL(IQUE) = I
57 INFL = NFLIDX(I,IQUE)
58 NFLQUE{IQUE) = INFL
59 . IDEG = DEGNFL(INFL,ICEL)
60 DEGQUE({IQUE) = IDEG
61 c Constraints:
62 IBAK = ICNT
83 [ Cell may not have same pitch twice in succession
64 I0LD = OLDQUE(IQUE)
65 if (I0LD.gt.0) then
66 if (IDEG.eq. DEGQUE(IDLD)) then
67 IBAK = minO(IBAK,CNTQUE(IOLD))
68 end if
69 end if
70 [ No virtual octaves
71 do (LCEL=1,MCEL)
72 if (LCEL.ne.ICEL) then
73 LOLD = OLOCEL(LCEL)
74 if (LOLD.gt.0 .and. DEGQUE({LOLD).eq.IDEG) then
75 if (I0LD.eq.0 .or. CNTQUE(IOLD).lt.CNTQUE(LOLD)) then
76 if (SEGQUE(IQUE)-SEGRUE(LOLD).le.1)} then
77 IBAK = minO(IBAK,CNTQUE(LOLD))
78 end if
79 end if
80 end if
81 end if
82 repeat
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83 c Sequence of degrees must conform to stylistic matrix
84 I0LD1 = IQUE

85 do

86 if (10LD1.eq.TAIL) go to 147

87 I0LD1 = IRET{IOLD1,MQUE)

a8 IDEGY = DEGQUE(IOLDA1)

89 if (IDEG1.ne.IDEG) exit

80 repeat

81 IOoLDe = IOLD1

82 do

93 if (I0LD2.eq.TAIL) go to 147

a4 10LD2 = IRET{IOLD2,MQUE)

95 IDEG2 = DEGAUE(10LD2)

96 if (IDEG2.ne.IDEG1 .and. IDEG2.ne.IDEG) exit
a7 repeat :

a8 ITVL1 = 1IDEG - IDEG1

|9 if (ITVL1.1t.0) ITVL1 = ITVL1 + 12

100 ‘ITVL2 = IDEG1 - IDEG2

101 if (ITvi2.1t.0) ITvie = ITVL2 + 12

102 if {.not. LGLTVL{ITVL1,ITVL2)) then

103 IBAK = minD{IBAK,CNTQUE(IOLD1))

104 end if

105 147 continue

1086 c Accept or reject this inflection

107 if (IBAK.eq.ICNT) then

108 CUMNFL (INFL,ICEL) = CUMNFL(INFL,ICEL) + DURQUE(IQUE)
108 c Advance to next note

110 "ICNT = ICNT + 1

111 if (1QUE.eq.HEAD) then

112 if (IADV{HEAD,MQUE).eq.TAIL) call WNOTE
113 call RNOTE

114 if (TIMQUE(HEAD).1t.0) go to 300
115 end if

116 IQUE = IAOV{IQUE,MQUE])

117 c Schedule inflections for next note

118 ICEL = CELQUE(IQUE)

119 OLDCEL{ICEL) = IQUE

120 call SHUFLE(NFLIDX(14,IQUE),MNFL)

121 call ISORT(NFLIDX(1,IQUE)},CUMNFL{1,ICEL),MNFL)
122 IDXNFL(IQUE) = O

123 BAKQUE(IQUE) = O

124 else

125 BAKQUE (IQUE) = max0{BAKQUE(IQUE),IBAK)
126 end if

127 else

128 Cc Inflections exhausted: Backtrack to most recent conflict
129 IBAK = BAKQUE(IQUE]) .

130 if (IBAK.eq.0 .and. ICNT.gt.1) then

131 . IBAK = ICNT - 1

132 else if (IBAK.1t.LIM) then

133 stop 'Unsuccessful search.’

134 end if

135 do

136 IQUE = IRET(IQUE,MQUE)

137 ICNT = ICNT - 1

138 INFL = NFLQUE(IQUE)

138 ICEL = CELQUE(IQUE)

140 OLDCEL{ICEL) = IQUE

141 CUMNFL{INFL,ICEL) = CUMNFL{INFL,ICEL) - DURQUE(IQUE)
142 if (ICNT.eq.IBAK) exit

143 repeat

144 end if

145 repeat

146 C

147 300 do

148 if (TIMQUE({TAIL).1t.0) exit

149 call WNOTE

150 repeat

151 close (2)

152 close (3)

153 . stop

154 end
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DEMO11.FOR Page 7
1 subroutine BNOTE
2 pasrameter (MCEL=8,MQUE=50)
3 integer HEAD,TAIL,OLDCEL(MCEL),
4 : TIMQUE(MQUE),PEHQUE(MQUE),DUHQUE(MQUE),CELQUE(MQUE),
=3 H SEGQUE(MQUE],OLDQUE(MQUE),NEWQUE(MQUE),CNTQUE(MQUE),
6 H DEGQUE { MQUE ) , NFLLQUE (MQUE)
7 common HEAD,TAIL,IQUE,ICNT,LIM,OL0CEL,
8 H TIMQUE , PERQUE ,DURQUE , CELQUE , SEGQUE , OLDQUE ,NEWQUE ,CNTQUE ,
9 H DEGQUE ,NFLQUE
10 o]
11 HEAD = IADV{HEAD,MQUE)
12 read (2,10) TIMQUE(HEAD) PERQUE (HEAD), DURQUE (HEAD) , CELQUE(HEAD),
13 SEGQUE (HEAD)
14 10 fFormat (515)
15 if (TIMQUE(HEAD).1t.0) return
16 ICEL = CELQUE(HEAD])
17 IoLD = OLDCEL(ICEL)
18 OLDQUE({HEAD)} = I0LD
18 if (IOLD.gt.0) NEWQUE(IOLD) = HEAD
20 NEWQUE (HEAD) = O
21 OLDCEL(ICEL} = HEAD
ee CNTQUE (HEAD) = ICNT
23 - return
24 end
1 subroutine WNOTE
2 parameter {(MNFL=3,MCEL=8,MQUE=50)
3 characters3 MNENFL(MNFL  MCEL)
4 imteger HEAD,TAIL,OLOCEL(MCEL),
5 H TIMQUE(MQUE],PEHQUE(MQUE),DUHQUE(MQUE),CELQUE(MQUE),
6 H SEGQUE(MQUE),DLDQUE(MQUE),NEWQUE(MQUE),CNTQUE(MQUE),
7 H DEGQUE (MQUE ) , NFLLQUE (MQUE)
8 common  HEAD,TAIL,IQUE,ICNT,LIM,OLDCEL,
9 H TIMQUE ,PERQUE,DURQUE, CELQUE ,SEGQUE, OLDQUE ,NEWQUE ,CNTQUE,
10 H DEGQUE ,NFLQUE
11 data MNENFL/' E3','F#3',' G3', 'Ab3','Bb3',' C4°',
12 H ‘C#a4',' D4','Eb4', 'F#4','G#4',' A4',
13 H 'B4',' C5',' DOS', ' F5',' G5',' A5',
14 H 'A#5',' BS','Cu#g', 'Du6',' EB',' FB6'/
15 c
16 ITIME = TIMQUE{TAIL)
17 MEAS = ITIME/S8
18 IBEAT = ITIME - MEAS*8
198 IGAFP = PERQUE(TAIL) - DURQUE(TAIL)
20 ICEL = CELQUE(TAIL)
21 if (IGAP.1t.0)} then
22 write (3,10) MEAS+1,IBEAT,PERQUE({TAIL),
23 ’ : MNENFL {(NFLQUE(TAIL),ICEL)
24 10 format (12,':',11,14,2X,A3)
25 else if (IGAP.eq.0)} then
286 type (3 10) MEAS+1,IBEAT,PERQUE(TAIL),
27 H MNENFL(NFLQUE(TAIL) ICEL)
28 write (3,15)
29 15 fFormat (' Break')
30 else
31 type (3,10} MEAS+1,IBEAT,DURQUE(TAIL]),
32 : MNENFL{NFLQUE(TAIL),ICEL)
33 write (3,20)
34 20 Format (' Rest')
35 end if
36 INEW = NEWQUE(TAIL)
37 if (INEW.gt.0) then
38 OLDQUE(INEW) = O
39 else if (TAIL.eq.OLDCEL(ICEL)) then
40 OLDCEL(ICEL) = O
41 end if
42 TAIL = IADV(TAIL ,MQUE)
43 LIM = LIM + 1
44 return
45 end
1 fFunction IADV{I,M)
2 IADV = I + 1
3 if (IADV.gt.M) IADV = IAQOV - M
4 return
s end
1 fFunction IRET(I,M) . .
e IRET = I - 1 '
3 if (IRET.1t.1) IRET = IRET + M
) return
5 end
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14.4.2 Implementation

-- Programming example 14-2: program DEMO11 (7 pages) --

Program DEMO11 proper serves merely as a controlling program
~for the two major subroutines FORM and RHYTHM. FORIM selects
material (note 2) for segments (Stage II), while RHYTHI composes
all of the notes in the piece to the extent of describing
periods, cells, and articulations (Stage IIIL). RYTHNM stores its
intermediate results in the file DEMO11.RHY for later processing
by the independent program PITCH. This last program selects
inflections for each note (Stage IV) and creates a mnemonic

listing of the final products.

14.4.2.1 Searching for an Acceptable Form - Subroutine FORM
implements a constrained search which selects from one to four
cells for each segment. The initial data resides in two arrays:
array element NUMSEG(I) holds the number of parts in the Ith

segment while array element DURSEG(I) holds the segment's
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duration in sixteenths (data for these two arrays are provided by
lines 6-8 of the BLOCK DATA subroutine). FORM stores and
accesses cells for each part in each segment by employing arrays
CELPRT and LIMSEG along with the following scheme of pointers:
cells selected for the Ith segment reside in elements
LIMSEG(I-1)+1 through LIMSEG(I) of CELPRT. Program DEMO1l proper
automatically computes the relative'positions stored in LIMSEG
from the cell counts stored in NUMSEG (lines 10-16; excepting
line 15).
v The varible IPRT serves as the recursive index and as a
pointer to the part and segment currently under consideration.
Notice that FORM does not reset IPRT to 1 when it advances to a
new segment; referring to Figure 14-7 for examples, IPRT=2 for
segment 2, part 1; IPRT=7 for segment 5, part 2; and so on.
Since a cell may appear no more than once within any
segment, FORM derives one schedule of cells for the whole segment
and then proceeds to allot célls to parts by sampling this

schedule without replacement. Array element CELIDX(J,I) holds

the cell scheduled Jth in line for the Ith segment; array
element IDXCEL(K) indicates which position in the schedule is
currently being considered for the segment and part accessed by
the pointer K; therefore, the actual cell number resides in
array element CELIDX(IDXCEL(J),I). Sampling without replacement

is effected by maintaining IDXCEL(LIMSEG(I-1)+1) through
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IDXCEL(LIMSEG(I)) in strictly increasing order {(due to line 137
of FORM) .

Prior to the search, program DEMOll proper computes for each
segment the portion of the segment's duration which the program
expects to devote to individual parts (line 15 of the loop
spanning lines 10-16), storing this value in the real array
INCSEG. Array CUMCEL maintains statistics of cumulative usage
for each of the eight cells; each time 1t selects a cell, FORHM
increments the appropriate element of array CUMCEL by
uiNCSEG(ISEG). Calls to the library subroutine FUZZY (heading
9.2) effect random scheduling with a strong bias -- the offset of
1.0 falls far short of the smallest value stored in INCSEG --
toward the least-used cells (lines 38 and 134 of FORMN).

The bulk of subroutine TFORM imposes the constraints upon the
search. The tests for segments with identical material (lines
50-75) compare the current segment to every preceding segment,
counting up the number of common cells in each case. The test
for too-close cells (lines 77-85) steps through each cells
already selected for the current segment and consults the logical
array LGLCEL (initialized in lines 11-18) in order to determine
whether or not the cell currently under consideration is
compatible with this earlier commitment. Requirements for
dovetailing (lines 88-116) are confirmed by first counting up the

number of cells shared with the most recent segment, then
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considering special cases.

Fach time FORM encounters a configuration which proves
unviable in the light of choices made for an earlier segment, it
updates the backtracking variable BAKSEG(ISEG). FORM
scrupulously consliders every possible configuration of cells for
the current segment until either it discovers a workable
arrangement or 1t runs out of combinations. In the latter case,
- BAKSEG provides the most recent segment responsible for any

conflict.

14.4.2.2 Generating Notes - The main body of subroutine RHYTHI
consists of an outer loop (lines 32-94) iterating once for each
of the 18 segments and an inner loop (lines 38-86) iterating once
for each note in a segment.

RHYTHM selects periods between consecutive attacks (lines
4bo-42) via the library function RANX (heading 4.4.2.1). Average
periods reside in array AVGNUM (initialized in line 8) and depend
on the number of parts in the current segment, NUMSEG(ISEG).

The subprogram selects cells (lines 44-65) using the methods
of the library subroutine DECIDE (heading 7.2). At the end of
each segment, RHYTHM steps through the active cells, subtracting

each cell's 'expected' cumulative statistic SUM*INCCEL(ICEL) from
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the actual value CUMCEL(ICEL) (lines 86-91). This procedure
insures that if a cell has received 1its 'falr share' of notes
during a segment, it starts out fresh in the next one; however,
when cells have been either slighted or overindulged, RHYTHM
retains awareness of such imbalances and acts to compensate for
them in later segments.

Articulations (lines 67-72) must be selected one step behind
in the process since how a note connects to its successor depends
on whether the succegsor exploits the same cell or a different
one. RHYTHM selects articulations by asking the library function
SUCCES (heading 4.4.1.1) to conduct Bernoulll trials; array
ARTIC (initialized in line 8) yields likelihoods that two
consecutive notes sharing identical cell numbers will be slurred;
as with average this likelihood depends on the number of parts in

the current segment. of parts

14.4.2.3 Searching for Acceptable Pitches - The independent
program PITCH with its attendent subroutines RNOTE and WNOTE
implement a constrained search which selects inflections for each
note in the piece. PITCH organizes data pertaining to individual
notes in several parallel quéues (heading 10.2.1). Each queue is

distinguished by the mnemonic 'root' QUE; +the following mnemonic
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prefixes signify information read in by PITCH from the

intermediate file DEMO11.RHY:

1. TIM - Starting time in sixteenths,
2. PER - Period to next attack in sixteenths,
DUR - Duration of note in sixteenths,

CEL - HMelodic cell (1-8), and

w» Fw

SEG - Segment (1-18).

‘Subroutine RNOTE creates three additional items of data per note.
Two items, a backward link OLDQUE and forward link NEWQUE, enable
PITCH to access notes quickly when it needs information pertinant
to specific cells. Figure 14-10 iliustrates the linked structure
derived by RNOTE for an actual sequence of notes read in fron
DEMO11.RHY. Pointers to the head of the backward list for each
cell reside in the auxiliary arréy OLDCEL. The third item
supplied by RNOTE, a decision count CNTQUE, indicates a note's
position in the absolute sequence of decisions; this information

assists the backtracking mechanism (note 3).

Figure 14-10: Data structure for program PITCH - Each
row of numbers signifies a note; the left network of
arrows shows backward links while the right network

shows forward links. The information depicted here
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describes the portion of Figure 14-9 beginning with the
second quarter of measure 14 and ending after the fifth

sixteenth of measure 28.

The head and tail of the queue are indicated by the integer
variables HEAD and TAIL, respectively. The varible IQUE both
serves as the recursive index and locates the note currently
under consideration. The integer functions IADV and IRET handle
the "wrap-around" arithmetic necessary to keep this and related
indices between 1 and MQUE. Array element
NFLQUE(IDXNFL(IQUE),IQUE) holds the inflection under scrutiny;
PITCH also transfers this value to the holding variable INFL for
more efficlent acces. Array DEGNFL (initialized in lines 25-26)
supplies chromatic degrees for each inflection in each cell;
PITCH transfers the current note's degree from array element
DEGNFL(INFL,CELQUE(IQUE)) to the holding variable IDEG. Both
INFL and IDEG are also stored in queues of theilr own for easy
future reference: NFLQUE and DEGQUE.

Fach time PITCH selects an inflection for a note, the
subprogram increments the appropriate element of array CUMNFL by
the duration the note. Scheduling is first rendered unbiased by
‘random shuffling (heading 5.2), after which a call to the library
subroutine ISORT (heading 9.1) strictly favors the least-used

inflections (lines 49-50 and 120-121).
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The constraints controlling how degrees of the chromatic
scale may recur are greatly facilitated by the linked structure
illustrated in Figure 14-10. PITCH initiates its test for
inflectlons repeated immediately within the same cell (lines
65-69) by locating the most recent note exploiting the same cell
through array OLDCEL. The test then reduces to simply comparing
inflectlon numbers. The test for virtual octaves (lines 71-82)
steps through each cell other than the current note's cell, using
OLDCEL to locate the other cell's most recent note. If both
hbtes share the same chromatic degree and if the current cell has
no intervening note, then the program rejects the current
inflection.

By contrast to the tests Jjust described, the test for
conformity to the stylistic matrix illustrated in Figure 14-8
(lines 84-105) is unconcerned with cell numbers. The first step
is to locate the two most recent notes in the queue whose pitches
are chromatically distinct both from the inflection currently
being considered and from each other. The program then feeds the
resulting chromatic intervals into the logical array LGLTVL
(initialized in the DATA statement spanning lines 14-24) in order
to determine if ﬁhe intervallic sequence is suitable.

The backtracking mechanism for program PITCH first consults
array BAKQUE in order to determine the source of an immediate

conflict. Sometimes the subprogram determines all of the
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inflections considered for a note suiltable, only to propigate
impasse at later notes in each instance. PITCH was unable to
supply information for dependency-directed backtracking in such
cases, so the subprogram was forced to grope back note-by-note in

order to pinpoint the source of conflict empirically.

14.5 NOTES

1. A similar information structure is used in program PITCH,

described under the next heading.

2. The material for Demonstration 11 was itself composed by

computer using the techniques described in this chapter.

3. For PITCH'S purposes, array TIMQUE could easily serve this
purpose; however, this implementation is designed to handle
truly polyphonic applications which allow several notes to start

simultaneously.
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