CHAPTER 13

LINKED INFORMATION

We have managed to get along fairly well to this point in
the book by storing data directly in sequential arrays. Even in
the most complex information structures we have used --
multi-dimensional arrays, stacks, and queues -- all a program
needs to do in order to access the next element in the sequence
is to increment an index. In many applications, however, 1t 1is
simply not practical to maintain units of information in
physically contiguous order. Sometimes the information might be
constantly in flux, with new units being inserted and older units
being deleted. Other times a programmer might desire to organize
information according to several perspectives, only one of which
may be reflected physically.

The present chapter examines structures in which each unit
of information includes one or more elements called links which
direct the program to one or more related units of information
(note 1). Links are particularly useful because they allow a
program to manipulate structures without fussing over the

physical location of each unit. Linked information structures

13-2

have been in the repertory of computer programming techniques
since the 1950's when Alan Newell, J.C. Shaw, and Hebert Simon
conducted their groundbreaking researches into heuristic
programming (reference?). They have acquired a mystique over the
years due to the introduction of interpreters with implicilt
link-handling features (note 2) and to the accompanying myth that
complled languages such as FORTRAN are unsuited to linked
structures. The truth 1s that such structures are quite sinmple
to implement explicitly and what many implicit implementations
impose restrictlons which are unnecessary and can even ultimately
hinder a programmer.

The basic unit of information in a linked structure is

called a node or record. ZEach node contains some number of

elements called fields, at least one of which serves as a

link. Links are also called pointers, references, and

addresses (note 3).

13.1 APPLICATION: A SIMPLE LINKED-LIST EDITOR

As an illustration of how linked data structures are
manipulated, we shall show how to implement an editor for linked

lists. A linked 1list is one of the simplest information

13-3

structures to use links. It has the followling properties:

1. each node has exactly one link, and

2. no two links point to the same node.

The linked lists manipulated by our simple editor are
characterized by two fields: a link and a value. There are five

commands, each deslgnated by a single upper case letter:

1. E - End editing session.

2. L - List the values of each node in order from the

smallest to the largest.

3. I - Insert a new node. Entering this command evokes a
prompt for a positive value; the value of a node in

turn determines the node's position in the list.
4., D - Delete a current node. Entering this command also
evokes a prompt for a value; the node in the list which

has thils value 1s then deleted.

5. P - Print diagnostics. This command prints out all of

13-4

the links and values as they occur in memory. It allows
users to see how the program physically stores

information.

Internally, the program‘actually manipulates two lists: a 'used'
list gives those nodes whose values have been directly specified
by the user, while a 'free' list keeps tabs on all the nodes not
presently occuring in the "used" lists. Inserting a new node
‘into the used list causes a node to be deleted from the free
list, and vice versa. In addition to the links and values
alloted to individual nodes, the editor also keep tracks of the
"heads" of both lists, so that it may distingulsh between the

two.

13.1.1 Dramatization

Figure 13-1: 1Interacting with a linked-list editor -
Responses to the "Command:" prompt were entered by the

author.

FPigure 13-1 dramatizes an editing session. Initially, the

Command: P

Head of used
Head of free
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:

OWOTAITHUN =

—_

Command: I
Value: 3.10

Command: I
Value: 4.20

Command: I
Value: 5.90

Command: I
Value: 2.80

Commend: I
Value: 9.00

Command: I
Value: 4.30

Command: I
Value: 8.20

Command: L
2.80
3.10
4.20
4.30
5.90
8.20
9.00

Command: P

Head of used
Head of free
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:

QOUX~IA PN —

—_

Command: D
Value: 5.90

Command: D
Value: 4.30

Command: D
Value:

8.20

list: O

list: 10
Free node
Free node
Free node
Free node
Free node
Free node
Free node
Free node
Free node
Free node

list: 7

list: 3
Free node
Free node
Free node
Value: 8.20
Value: 4.30
Value: 9.00
Value: 2.80
Value: 5.90
Value: 4.20
Value: 3.10

. Link:

Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:

[Cole: BN NS, FoA I VE N o)

Link:
Link:
Link:
Link:
Link:
Link:
Links
Link:
Link:

WIS OO0ODOAN—O

Command: L
2.80
3.10
4.20
9.00

Command: P

Head of used list: 7
Head of free list: 4

Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index: 1

OW WAV AVIN

Command: I
Value:

Command: I
Value:

Command: I
Value:

Command:]

Free node
Free node
Free node
Free node
Free node
Value: 9.00
Value: 2.80
Free node
Value: 4.20
Value: 3.10

9.10

6.70

2.20

Value: .10

Command: L

.10
2.20
2.80
3.10
4.20
6.70
9.00
9.10

Commend: P

Head of used list: 3
Head of free list: 2

Index: 1
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index:
Index: 1

WO H™AN

Command: E

Free node

Free node

Value: .10
Value: 9.10
Value: 6.70
Value: 9.00
Value: 2.80
Value: 2.20
Value: 4.20
Value: 3.10

Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:

Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:
Link:

WAHRUOO WU -0

WU -10H0000—>0O

(BWCQQ

:rv?‘lm" TR PP,

13-5

used list 1s empty, so the head of this list is designated by the
"null 1link", 0. By contrast, the free list embraces all
avallable nodes; the head of the free list is designated as node
10, which provides a link to mode 9. Node 9 in turn provides a
link to node 8, and so on down to node 1, whose null link
proclaims the tail of the free list.

The next seven I commands serve to insert seven new nodes,
after which an L command causes the editor to list the seven
corresponding seven values in order. Typing a P command reveals
>that each insertion has caused a node to be transferred from the
head of the free list to some position in the used list. Node 7
is now situated at the head of the used list; node 7 provides a
link to node 10, which in turn provides a link to node 9, and in
this manner the program proceeds through nodes 5, 8, 4, and 6,
whose null link indicates the tail of the used list. Only three
nodes remain in the free list: 3, 2, and 1.

The next three D commands serve to transfer three used nodes
to the head of the free list. The used nodes now proceed fromn
node 7 through nodes 10 and 9 to node 6, while the free nodes

proceed from node 4 through nodes 5, 8, 3, and 2 to node 1.

13-6

13.1.2 Implementation

—- Programming example 13-1: program EDIT (2 pages) --

Program EDIT and its ancillary subroutines SEARCH, INSERT,
and DELETE illustrate how a programmer might implement a
linked-1list editor in FORTRAN '77. EDIT stores values and links
for each node in two parallel arrays, the real array VALUE and
the integer array LINK, respectively. A single index suffices to
access both of the fields for any given node. The parameter MLST
determines the maximun numbér of nodes, while the two integer
varibles USED and FREE keep track of the "heads" of the used and
free lists, respectively.

The basic structure of EDIT is a large loop (lines 18-68)
which begins each iteration by prompting the user for a command
and then, through a sequence of conditional tests, interprets

this command. These conditional blocks break down as follows:

1. E - (line 22) EDIT terminates the editing session.

f3-bo

1 program EDIT

4 c

3 c Simple linked-list editor

) c

S5 parameter (MLST=10)

] real VALUE{MLST),V

7 integer LINK(MLST),USED,FREE,OLD,NODE,NOW,NEXT,NEW
8 character*1 CMD

9 logical SUCCES

10 data USED/D/

14 c

12 c Initialize free list

13 do (I=1,MLST)

14 LINK(I) = I - 4

15 repeat

16 FREE = MLST

17 [

18 do

19 type ‘'Command: '
20 - read %,CMD
21 if (CMD.eq.'E') stop
a2 if (CMD.eqg.'L') then
23 I = USED
24 do
25 if (I.eq.0)} exit
e6 print %, VALUE(I)
27 I = LINK(I)
28 repeat
29 else if (CMD.eq.'I') then
30 type 'Value: ! ’
31 read %,V
32 call SEARCH{VALUE,LINK,USED,NOW,NEXT,V,SUCCES)
a3 if (SUGCCES) then '
34 print %, 'Value already present in list.'
35 else
36 call INSEHT(LINK,USED,FHEE,NDW,NEXT,NEW]
37 VALUE(NEW) = V
38 end if
39 else if (CMD.eq.'D') then
40 type 'Value: '
41 read %,V
42 call SEARCH(VALUE,LINK,USED,OLD,NODE,V,SUCCES)
43 if (SUCCES) then
44 VALUE(NDDE)} = 0.0
45 call DELETE{LINK,USED,FREE,OLD,NODE)
46 else
47 primt ¥, 'Value not present in list.®
48 end if
48 else if [(CMD.eqg.'P') then
50 print %, 'Top of used list:',USED
S1 print %, 'Top of free list:',FREE
52 ' do (I=1,MLST)
53 if (VALUE(I).gt.0) then
54 print %, 'Index:',I,’ Value:',VALUE(I)," Link: ' ,LINK(I)
55 else '
58 print %, ‘Index:',I,' Free node Link:",LINK(I)
57 end if
58 repeat
59 else
60 print ¥, ‘'Illegal command.'
61 end if
62 repeat
63 . end

4 subroutine SEARCH({VALUE,LINK,USED,NOW,NEXT,ARG,SUCCES)
2 real VALUE(1),ARG

3 integer LINK(1),USED,NOW,NEXT

4 logical SUCCES

S SUCCES = .false,

6 Cc Check for empty list

7 if (USED.eq.0) return

a8 Cc Examine each node until VALUE exceeds ARG

9 NOW = O

10 NEXT = USED

11 do

12 V = VALUE{NEXT)

13 if (ARG.eq.V) SUCCES = .true,

14 if (ARG.le.V) return

15 NOW = NEXT

16 NEXT = LINK({NOW)

17 if (NEXT.eq.0) return

18 repeast

19 end

r"‘l““’"‘“""""ﬂ “"I'"'“‘ r FR P ._!‘ C r-,,,-,..,,,' Ay P Y W ',‘"W‘l’

€EDIT.FOR

VONOUIDHWN -

subroutine INSERT(LINK,USED,FREE,NOW,NEXT,NEW)

integer LINK(1),USED,FREE,NOW,NEXT,NEW

Test for list overflow
if (FREE.eq.0) then
print %, 'List overflow.’
return
end if
Obtain node from free list
NEW = FREE
FREE = LINK{FREE)
Insert node into used list
if (NOW.eq.0) then
USED = NEW
else
LINK{NOW) = NEW
end if
LINK(NEW) = NEXT
return
end

subroutine DELETE(LINK,USED,FREE,OLD,NODE)
integer LINK(1),USED,FREE,OLD,NODE

Delete node from used list
if (OLD.eq.0) then

USED = LINK(NODE)
else

LINK(OLD) = LINK(NODE}
end if
Append node to free list
LINK{NODE) = FREE
FREE = NODE

return
end

Page 2

B R R

13-7

2. L - (lines 24-29) EDIT steps through the used nodes,

printing each value.

3. I - (lines 31-40) EDIT prompts the user for a value V,
then requests subroutine SEARCH to determine two
consective nodes in the used list, NOW and NEXT, such
that V lies between VALUE(NOW) and VALUE(WEXT). EDIT
then asks subroutine INSERT to detach a record NEW from
the free list and insert NEW into the used list between

NOW and NEXT. Finally, EDIT stores V in VALUE(NEW).

4. D - (lines 45-53) EDIT prompts the user for a value V,
then requests subroutine SEARCH to locate a node NODE in
the used list, such that VALUE(NODE) matches V. SEARCH
also returns the node immediately preceding NODE in the
used list as the integer variable OLD. EDIT then asks
subroutine DELETE to delete NODE from the used list and

append it to the free list.

5. P - (lines 55-64) EDIT simply prints USED, FREE, and the

elements of VALUE and LINK.

The implementation chosen for EDIT and its subroutines is by

no means the only implementation conceilvable. In

13-8

assembly-language programming it 1is conventional to store the
fields of one record in consecutive locations of memory.
Programmers can implement such storage in FORTRAN by declaring
arrays with several consecutive elements per node (one element
per field). This approach requires nodal indices to proceed in
increments greater than one. When the number of fields in each
node is constant, it will usually be convenient to declare one
array for each fleld and to use EQUIVALENCE statements to speciiy

relative offsets between arrays (note 4).

13.2 LINKED LISTS IN AUTOMATED COMPOSITION

Herbert Brun has developed a utility called SAWDUST
(implemented by 1976; described in Blum, 1979) for manipulating
aggregates constructed from the "smallest parts of waveforms".
These "smallest parts", or "elements" are each described by two
values: a magnitude and a number of samples. Elements are
pieced together as step functions to create waveforms; waveforms
are pieced together to create notes, notes are pieced into
musical phrases, and so on until an entire work has been

described.

Each aggregate is represented as a linked list, which at the

13-9

most elementary level (a single node) consist of simple elements.

SAWDUST provides four operations:

1. LINK splices two items together into a larger item. At
the most elementary level, LINK can be used to splice
elements into waveforms; the same procedure suffices to

splice notes and phrases.

2. MINGLE repeats an item a specified number of times by
linking together the appropriate number of copies. This
operation provides the basic mechanism for creating

sustained notes from waveforms.

3. MERGE accepts two items and collates thenm
element-by-element to derive a third item. For exanple,
if if A=[el,e2,e3] and B=[el,e5,e6], then MERGE A,B

creates a new item of the form [el,el,e2,e5,e3,e6].

4, VARY transmutes a waveform over a specified duration.
In addition to waveform and duration, the user specifies
1) initial and final values for either amplitude or
period of the waveform and 2) a number N. SAWDUST uses
this number to construct a polynomial curve passing

through these initial and final values at the

13-10

appropriate times (for example, if N=1 then SAWDUST will
construct a straight line; 1f N=2, the curve will be
parabolic, and so on). It then repeats the link over
and over, altering amplitude or period in accordance

with this curve.

Brun has employed SAWDUST to create a series of works, including

Dust (1976), More Dust (1977), Dustiny (1978), A lere

Ripple (1979), U-Turn-To (1980), and I Told You So (1981).

i Petr Kotik's utility composing with Markov chains (heading
6.1.4) had two components, a Markov-matrix editor and a chain
generating program. The chaln generating program closely
resembled program CHAIN2 and subroutine MARKOV (heading 6.2)
except that it accepted matricies with an arbitrary number of
states, read in from a disk file. The editor allowed Kotlk to
describe and modify matricies, which he tested through the chain
generator. Kotik tended to specify a large number of states;
however, since he also tended to restrict the number of
destinations available to individual states, it was possible to
reclaim much of the memory by treating each N-state matrix as a
set of N linked lists. Each node in a list therefore consisted
of a link, a destination (the source being implicit), and a

probabilistic weight.

13-11

13.3 DMORE ELABORATE STRUCTURES

The simple linked lists described up to this point are
easily organized into stacks and queues (heading 10.2); indeed,
the free list employed by program EDIT functlons preclsely as a
stack. Programmers can also generalize the notion of linking by

allowing each node to have two or more links.

13.3.1 DMultig@ms-Linked Lists

A fairly straightforward generalization addresses the
problem that in the linked lists we have seen thus far, it 1s
only possible to step through a list in one direction. If each
node had a second link referring "backwards" to the node's
predecessor, then it would be possible to step through a list in
both directions. Such a list 1s called a doubly linked 1list.

Another application was mentioned at the opening of this
chapter: organizing information according to several

perspectives, only one of which may be reflected physically.

13-12

This problem may easilybbe solved by providing each item of
information with one 1link for each criterion of organization.
For example, a program might need to manipulate a collection of
notes organized physically by starting times but characterized
also 1) by three instrumental choifs: strings, horns, double
reeds, and 2) by five registers: soprano, alto, tenor, bass,
and double bass. This program could then employ two links per
note: 1) an instrumental link would provide independent access
to sequences of notes played by each of the different
instrumental choirs (with three pointers giving the head of each
list); 2) a registral link would access sequences of notes

played in each register (with five pointers).

13.3.2 Trees

Trees are hierarchic data structures in which each node

has the following properties:

1. each node has two or more links, and

2. no two links point to the same node.

13-14

however, trees do not seem really necessary for the process Fry

describes.

13.5 RECOMMENDED READING

Knuth, Donald. "Information structures", chapter 2 of

Fundamental Algorithms (Reading: Addison-Wesley, 1963).

13-13

Trees are an extremely elegant way of structuring information,
but as yet have had only limited application in automated

composition (note 5).

13.4 NOTES

1. The primary reference for linked information structure is

Knuth's Fundamental Algorithms (1963).

2. LISP is the most prominent example.

3. The term "address" is confusing because programmers typically
refer to the location of a node in memory as its "address", e.g.,
"The address field of a node contains the address of the next

node . "

4. Unfortunately, this practice cannot be used with many FORTRAN
'77 compilers, which unlike earlier implementations of FORTRAN do
not allow programmers to declare equivalences with subroutine

parameters.

5. The structure described by Fry (1980) is instructive;

	1
	2
	3
	4

