CHAPTER 12

COMPARATIVE SEARCH

A search is a process which evaluates many alternate
solutions to a problem in order to select one solution meeting
some set of criteria. The simple example of looking up a name in
a phone book illustrates a single-decision problem: each
possible solution corresponds to a single option. A much more
complex example of searching 1s determining a strategy in a game
of chess. In this second example, each solution encompasses a
sequence of decisions, and each of these decisions may provoke a
number of alternate responses from the competing player.

There are a wide variety of algorithms for searching, and as
is usual, the most appropriate algorithm varies with the specific
application (note 1). By far the most successful approach to
solving problems with many decisions has been recursive
searching. Such searches were first proposed by Shannon (1950)
for "automatic" chess playing; later, they were adapted to
logical theorem-proving by computer scientists Alan Newell and
J.C. Shaw, in collaboration with psychologist Herbert Simon (1958

a,b; note 2).
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In general, a recursive search organizes the decisions of a
problem into a well-defined sequence and then constructs a
correspondingvsequence of partial solutions according the
following recursive scheme: the first partial solution consists
of the first decision in the sequence; each new partial solution
i1s obtalned by advancing to the next decision in the sequence and
appending the result to the preceding partial solution. A search
through the set of all possible solutions to the problem may then
be effected systematically by enumerating every option available
fd the first declision, enumerating every option available to the
second decision given each (partial) solution to the first
declsion, enumerating every option available to the third
declislon given each solution to the first two decisions, and so
on until‘every combination of options over all of the decisions
involved in the problem has been exhausted.

The present chapter investigates comparative searches,

which attempt to find optimal solutions to problems
encompassing many decisions. The strategy of a comparative
search consists of systematically enumerating every possible
solution and comparing each new solution, or candidate to the
best solution so-far encountered, or incumbent. Comparative
searches have been used by the author to produce two
Computer—composed works for solo piano: Protocol (1981;

described 1982) and Gradient (1982; described 1983). The
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advantage of comparative search over all other methods of
decision making déscribed in this book is that, given enough
time, it always finds the best solution. Its disadvantage is
that the number of solutions may be too large for even a computer

to evaluate in any reasonable amount of time.

12.1 EXAMPLE: A SEARCH FOR 'OPTIMAL CONSONANCE'

We 1illustrate the mechanism of comparative search by
searching through the I major scale for a four-part chord which
is 'optimally consonant' in the sense of having as few or fewer
dissonant intervals when compared to any other chord. We further
stipulate that for the purposes of this search, each degree in
the chord should be different, and judgements of relative
consonance should be independent of inversion, voicing, and
transposition. Specifically, intervals which are obtainable from
one another by displacing a pitch by one or more octaves or by
transposing both pitches by anvequal number of semitones should
be Jjudged equally consonant.

The trick to implementing a comparative search is to
organize all items of information necessary to describe each

option selected for each decision into parallel arrays.
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Soluﬁions may then be enumerated recursively, by treating these
arrays as stacks (heading 10.2.2) for which the elements up to
the Ith position describe a partial solution up to the Ith
decision. The incumbent may be stored in a second set of
parallel arrays until the program has run its course;
alternately, the sequence of incumbents may be printed for
perusal by the program's user.

Program CONCHD enumerates all of the four-part chords in an
F ma jor scale, substituting a candidate for the incumbent
whenever the candidate 1s less dissonant. ZEnumerating all of the
four-part chords in an F major scale is equivalent to enumerating
all the ways of choosing four numbers out of seven, so CONCHD
closely resembles program COMBNZ2 (heading 10.1) in its mechanismn.

CONCHD employs the following symbols:

1. The integer variable IPRT gives the current part of the
candidate chord for which a scale degree is being

considered.

2. Array element SCLPRT(I) gives the degree of the F major
scale for the Ith part of the candidate. For reasons of
efficiency, SCLPRT(IPRT) is stored in the holding

variable ISCL.
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3. Array element DEGPRT(I) gives the degree of the
chromatic scale starting on F for the Ith part of the
candidate. Tor reasons of efficiency, DEGPRT(IPRT) is

stored in the holding variable IDEG.

4. Array DEGSCL converts degrees of the F major scale into
degrees of the chromatic scale. The contents of DEGSCL

are established by the DATA statement in line 6.

5. Array LETTER holds a two-character mnemonic for each

degree of the F major scale.

6. Array element QALPRT(I) holds a packed key (heading
9.1.3) talleying the various types of interval present
in first I parts of the candidate. QALPRT assigns

greater significances to the more dissonant intervals.

7. Array QALTVL gives relative significances (expressed in
powers of 4) for intervals spanning from one to eleven
senitones. The contents of QALTVL are fixed at the

values specified in line 7.

The variable LEAST holds the minimum value of QALPRT(MPRT) so-far

encountered. This value is the only information which CONCHD



1 program CONCHD
e c
3 C Program for finding an 'optimally consonant'’ four-part
4 c chord by compsrative search
5 [»] )
B parameter (MSCL=7,MPRT=4)
7 integer SCLPHT(MPHT),DEGPHT(MPHT),QALPHT(MFHT),
8 : DEGSCL (MSCL ) ,QALTVL{11)
9 character%2 LETTER{MSCL)
10 data DEGSCL/1,3,S,8,B,10,12/
11 data QALTVL/256,1E,4,1,0,64,0,1,4,18,256/
12 data LEAST/1DDOOOD/,LIM/4/,IPHT/1/ .
13 data LETTER/' Fr, ¢ G',' A','Bb", c','* p',' v/
14 [
15 SCLPAT(IPAT) = o
16 ) do
17 c Increment jindex
18 ISCL = SCLPRT{IPAT) + 1
19 if (ISCL.lt.LIM+IPHT) then
20 SCLPRT(IPRT) = IscL
21 I0EG = DEGSCL(ISCL)
22 DEGPRT(IPRT) = IDEG
23 c Evaluate contribution of this degree to current chord
24 if (IPRT.eq.1) then
e5 K =90 .
26 else
27 K = QALPRT(IPRT-1) -
28 do (I=1,IPRT-1) :
29 K =K + QALTVL(IDEG-DEGPHT(I))
30 repeat
31 end if
32 [ Compare current chord to least dissomant chord
33 c so-far encountered
34 : if (K.1t.LEAST) then
35 c Current chord is still less dissonant
36 Af (IPAT.eq.MPRT) then
37 Cc Current chord is complete: update least dissonant chord
38 LEAST = K
39 print %, (LETTEH(DEGPHT(I)),I=1,MPHT),LEAST
40 else
. 41 [ R Current chord is incomplete: advance to next part
' a2 QALPAT(IPRT) = K
43 IPRT = IPRT + 1
44 SCLPRT(IPRT) = IscL
45 end if
48 end if
47 else
48 c Backtrack to previous part
43 ’ IPAT = IPRT - 1
50 if (IPRT.1t.1) exit
51 end if
se2 repeat
53 stop
54 . end
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needs to retains internally about an incumbent; whenever LEAST
exceeds QALPRT(MPRT), the program records the current candidate
as incumbent on the output listing, then reduces LEAST to the new

minimum value.
~- Programming example 12-1: program CONCHD --

The first task in implementing judgements of relative
fconsonanCe is to select a base for the packed key. If we
consider all the intervallic relationships between adjacent and
non-adjacent parts, any four-part chord contalns six intervals.
However, since any non-adjacent interval must be a combination of
adjacent intervals, 1t can be shown that no single intervallic
type may appear more than three times. Program CONCHD therefore

uses a base of

Since none of the chords under‘consideration contain any
doubled chromatic degrees, CONCHD is able to regard the perfect
fifth and its inversion, the perfect fourth, as optimally
consonant intervals. CONCHD assigns relative significances to

each remaining intervallic type as follows (note 3):
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Intervallic Type Significance
0

major 3rd, minor 6th L = 1
1

minor 3rd, major 6th L = 4
2

major 2nd, minor 7th u = 16
3

tritone : 4 = 64
n

minor 2nd, major 7th U = 256

Figure 12-1: Chronicle of a comparative search - The
leftmost column of single pitches shows choices of the
first degree of the 'candldate' chord, while the next
three successive columns are each derived by selecting
one additional degree and appending it to the partial
results obtained in the preceding column. Branching
arrows indicate where one cholce serves for multiple
candidates. The rightmost column shows the 'incumbent'

chord.

Figure 12-1 traces the behavior of program CONCHD as it
evaluates each combination of four T major degrees. We see that
an optimal chord has a packed key of 25, which we may "unpack" to

determine the composition of intervals as follows:
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Intervallic Types ‘Contribution
One major second or minor seventh | 1 x16 = 16
Two major thirds or minor sixths 2 x b = 8
One minor second or major sixth 1x 1 = 1
Two perfect fifths or perfect fourths 2x 0 = _1
25

Notice that the search illustrated in Figure 12-1 encounters
"“three distinct chords characterized by this same packed key;
CONCHD selects F G Bb D solely because the enumerating process
encounters this chord first. Notice also that the search
backtracks immediately whenever 1t Jjudges a partial candidate to
be less consonant than the full incumbent. This shortcut
increases computational efficilency by eliminating unecessary
evaluations from the search (note 4). Though it provides
relatively little advantage here over a fully exhaustive search,
it can substantially reduce searching time in many applications.
The shortcut gains effectiveness as the number of decisions

increases.
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12.2 DETERMINING THE NUMBER OF SOLUTIONS

Before implementing a comparative search, it 1s good
practice to determine its feasibilty by estimating the number of
solutions. In general if a problem requires N decisions with
k(1) possible options for the ith decision (i ranging from 1 to

N), then the number of solutions, K, is given by Equation 12-1:
K = k(1) x k(2) x k(3) x ... x k(N) (Equation 12-1)

For example, in a problem requiring 5 decisions with 4 options
for the first decision, 3 options for the second, 7 options for

the third, 10 options for the fourth, and 2 options for the last,

the number of possible solutions is:
L x 3 x7 x 10 x2 = 1680

Table 12-1 detaills values of Equation 12-1 for a number of
important special cases, which we shall examine specifically

under the next few headings.
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Table 12-1: Special cases of Equation 12-1 - K denotes
the number of solutions to N decisions drawing from a
pool of M options. A) ordered with replacement;

B) ordered without replacement; C) unordered without

replacement; D) unordered with replacement.

12.2.1 Decisions with a Constant Number of Options

Often the number of options remains constant for each
decision. Given N decisions, each with M options, Equation 12-2
yields the number of solutions, K. Table 12-1A gives values of K

for each N and M up to 10.

K = M ' (Equation 12-2)

Though the number of options must remain fixed at N for Equation
12-2 to apply, the specific options in themselves may vary.
Suppose, for example, that one wishes to compose a‘seven—part
chord, with seven possible pitches for each part. Table 12-1A

indicates that there would be 823,542 candidates for each chord.
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12.2.2 Selecting Options From a Common Pool

Many applications require all options to be drawn from a
common pool. In such cases the number of solutlons is strongly

affected by two important criteria:

1. When selecting an option eliminates it from the pool, we
say that each selection 1s accomplished "without
replacement"; otherwise, we say it 1is accomplished
"with replacement". For example, if one employs a
comparative search to select degrees of a chord from a
scale, then whether selection occurs with or without
replacement depends on whether or not it is permissible
to double degrees of the chord. Selection without
replacement admits many fewer solutions than selection

with replacement.

2. Whenever any two solutions are considered equivalent if
they embrace the same set of options but in different
arrangements, we call the process of selection

"unordered™; when two such solutions are considered
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different, we call the process "ordered". Returning to
the example of selecting degrees of a chord from a
scale, then whether the selection is "ordered" or
"unordered" depends on whether or not selecting a degree
assigns it to a specific part (e.g., melody, inner part,

bass). Unordered selection admits many fewer solutions

than ordered selection.

Program CONCHD (heading 12.1) provides a basic model for all
of the varieties of comparative search discussed under the
present heading. In CONCHD, the Ith "decision" consists of
selecting a degree for the Ith part in a chord. Array DEGSCL
stores a common pool of options, in this case, degrees of the F
major scale, while array SCLPRT holds the index to the option
under consgideration by each decision. We now consider how CONCHD
may be adapted to the various conditions of replacement and order

described above:

1. As it stands, CONCHD implements unordered selection

without replacement. Notice that upon advancing to the

Ith part (line 40), the program initializes SCLPRT(I) to
SCLPRT(I-1). Since the program immediately increments
SCLPRT(I) with the next iteration of the loop (line 14),

- this practice insures that the sequence of scale degrees
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always ascends wocthoud uepa’ri"n‘ous‘.

2. Adapting the program to unordered selection with

replacement would involve initializing SCLPRT(I) to

SCLPRT(I-1)-1 upon advancment to the Ith part. With
this modification the sequence of scale degrees would
still ascend, but immediate repetitions of degrees would

be admitted.

3. Ordered selection with replacement would require

initializing SCLPRT(I) to zero upon advancment to the
Ith part. This modification would admit. any sequence

of scale degrees.

4, Finally, converting CONCHD to ordered selection

without replacement would require initializing

SCLPRT(I) to zero upon advancement to the Ith part, plus
a constraint against any degree already under
consideration by an earlier part. This modification

would admit any non-repeating sequence of scale degrees.

Given a process which selects N options in order from a
pool containing M elements, Equation 12-2 applies if selection

occurs with replacement. If selectlon occurs without
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replacement, then N may not exceed M, and Equation 12-3 yields

the number of solutions, K. The case of a ordered selection
without replacement with N=M corresponds to a comparative search
used to organize the resources allotted to a statistical frame.
Table 12-1B gives values of K for each M up to 10 and each N not

exceeding M.

K = ! (Equation 12-3)
iM—N;! i

For example, suppose we wish to determine how many four-part
chords may be drawn ffom a seven-note scale 1f we take into
account the degree selected for each part. This is a process of
ordered selection with M=7 and N=4. If we allow doublings of
degrees, then selections occur with replacement, so Table 12-1A
indicates that the number of potential chords is 2401. If we do
not allow doublings, then selections occur without replacement,
so Table 12-1B indicates 840 chords.

Given a process which selects N unordered options without

replacement from a pool containing M elements, then N may not

exceed M, and Equation 12-4 yields the number of solutions, K.
Table 12-1C gives values of K for each M up to 10 and each N not

exceeding M.
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K = M! (Equation 12-U4)

Nt (M-N)!

For example, suppose we wish to‘determine how many distinct
four-part chords with no doublings may be drawn (without regard
to inversion or voicing) from a seven-note scalé. Then we have
M="7 and N=4, so consulting Table 12-1C tells us that there are 35
such chords.

Given a process which selects drawing N unordered options

from a pool containing M elements with replacement, then

:Equation 12-5 yields the number of solutions, K. Table 12-1D

gives values of K for each M and N up to 10.

K = (M+N-1)! (Equation 12-5)
NI(M-1)!

For example, suppose we again wish to determine how many distinct
four-part chords may be drawn without regard to inversion or
voicing from a seven-note scale, but this time wish to allow
doublings. Then we again have M=7 and N=4, but consulting Table
12-1D tells us that the number of potential‘chords increases to

84,
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12.3 DEMONSTRATION 10: COMPARATIVE SEARCH

Demonstration 10 illustrates how comparative searches can be
used to compose a plece of music. Demonstration 10 reverses the
approach taken with Demonstrations 8 and 9, for which musical
details were deduced from the 'top down', as consequences of the
ﬁﬁsical design: the form of Demonstration 10 is induced from the
'"bottom up' up, on the basis of qualities inherent in previously
composed material. The piece reflects the author's composition
Protocol to the extent that Demonstration 10's material
conslsts of recurrent modules, each comprised of several
chords whose order of progression is contextually determined.

As with Demonstration 7, Demonstration 10 employs techniques of

'implied polyphony' to adapt this chordal material to the

monophonic nature of the clarinet.

12.3.1 Compositional Directives

LSS
Q’TheP;gx of composing Demonstration 10 divides into three stages
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of production:

Mateinc . .
1. Stage I: Choerds - This stage takes the registral

information shown in Figure 12-2 and composes the 12

chords depicted in Figure 12-3.

2. Stage II: Form - This stage steps through each of the

segments described in Table 12-2 and arranges its chords

into the progression detailed in Figure 12-4.

3. Stage III: Content - The third stage takes the

results of PROGRS along with the ranges of articulation
shown in Figure 12-2 to arpegglate the progression of

chords in a manner playable on a clarinet.

The final result appears in Figure 12-5.

12.3.1.1 @Wé?ﬁg;& As shown in Figure 12-2, the twelve chords of
Demonstration 10 combine into three ‘'modules'. Each of these
modules is unified by a characteristic register, by a range of
articulations, and by an average chordal duration which holds for

of the module as a whole.
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Figure 12-2: Compositional data for Demonstration 10.—
Dots on the registral graph indicate center pitches of

a five-semitone gamut available to each part in each
chord. The bold vertical lines on the graph of
‘articulations define regions of relative likelihood for
.three styles of playing: 1) slurred, 2) normal, and 3)r.
detached. The average chordal duration supplied for

each module indicates gixteenth notes.

Stage I of the composing process seeks to reconcile
directives intended to promote chromatic diversity, dissonance,
rand divergent part-leading. The most emphatic of these

directives assume the status of constraints:

1. As a minimum condition of chromatic diversity, no two
chords may share more than two degrees of the chromatic

scale.

2. As a minimum condition of dissonance, no two pitches in
a chord may occupy the same degree of the chromatic

scale.

3.' Parallelisms are restricted in the following way:
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a. For any pair of chords residing in the same module,
the interval relating any two parts in one chord may
not be duplicated in the cofresponding two parts of

the other chord.

b. For any pair of chords residing in different
modules, the intervals relating any three parts one
chord may not be duplicated in the corresponding

three parts of the other chord.

Each chord is composed by a comparative search; backtracking is
limited to the extent that once the program advances to a new
chord, no revision of any previous chord takes place. Subject to
the constraints listed above, each search employs two criteria

for evaluating candidates:

1. Chromatic redundancy: For each degree in a chord, the

program tallies how many times the degree appears in
previously composed chords. The maximum of these
tallies yilelds a worst-case measure of the chord's

'chromatic redundancy'.

2. Sonorous gquality: The program derives this number by

first tallying the number of times each type of interval
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occurs in a chord and then packing these tallies into a
single number which assigns the greater significances to

the more consonant intervals.

Less 'redundant' candidates displace incumbents; more
'redundant' candidates are discarded. When candidates and
incumbents are equally 'redundant', then the candidate displaces
the incumbent only when the candidate's value of 'sonorous
‘quality' 1s lower. Figure 12-3 shows the results of the twelve
chordal searches. Notice that the formulation of 'sonorous
quality' favors chords of the diminished seventh (chords 2 and 4)
over chords of superimposed fourths, fifths, and tritones

(especially, chord 8, but see also chords 7 and 11).

Figure 12-3: The 12 chords - The two "keys" supplied
beneath each chord indicate 1) 'chromatic redundancy'
relative to the preceeding chords and 2) 'sonorous
quality', expressed as packed tallies of intervallic
types, with the greater significances associated with

the more consonant intervals.

With 5 pitches available to each part and U4 parts, Equation
12-2 applies to indicate a theoretic total of 625 chords to

choogse from. In practice, the constraints against doublings,
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parallelism, and chromatic overlap substantially reduce the

number of acceptable chords. Only when a partial chord meets the

absolute requirements imposed by these constraints does

proceed to evaluate its 'chromatic redundancy' and 'sonorous

quality'.

12.3.1.2 TForm - The piece divides into twelve segments, each of
which draws material from a single module. Table 12-2 detalls
descriptive information for each segment. The number of chords
appearing in a segment depends upon both the length of the

segment and the module's average chordal duration:
Table 12-2: Formal layout of Demonstration 10.

Given the chordal content of a segment (note 5), Stage II of
the composing process is responsible for determining in what
order the chords will occur. This problem is fundamentally one
of organizing a statistical frame; where programs for earlier
demonstrations would have either shuffled the chords randomly
(chapter 5) or sorted the chords so that preferred chords
received preferred the more desirable positions (chapter 9), the

et
technique of comparative search enables théVﬁ}ogram to be
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Measure Number of
Segment & Beat Duration Module Chords
1 1:0 69 1 5
2 9:5 52 2 6
3 16: 1 52 1 4
4 22:5 25 3 3
5 26:5 53 2 6
6 33:2 42 3 4
7 - 38:4 45 . 2 5
8 44 :1 48 1 3
9 50:1 - 45 3 4
10 55:6 35 1 3
11 60:1 42 2 5
12 65:3 61 3 6

Table 12-2
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sensitive to context when it considers alternate chordal
progressions.

By contrast to the chord-composing searches, the searches
for 'optimal' chordal progressions impose no constraints. Two

criteria serve to evaluate candidates:

1. 'Blandnesé': For each progression of chords, the
program tallies how many pairs of consecutive chords
share 0, 1, 2, or 4 chromatic degrees in common (note
6). It then packs these tallies into a single key,
asslgning greater significances to consecutive chords
sharing more degrees. The resulting quantity gives a

measure of 'blandness' (note 7) in the progression.

2. 'Balance't In order to keep the chordal resources in
balance, the program maintains cumulative statistics
reflecting the total duration over which each chord has
been employed. The ‘'balance' of a progression is a
vector (note 8) which is determined by considering the
largest statistic as a primary key, the next largest
‘statistic as a secondary key, and so on for each

statistic.

The primary goal of the search is to arrange the chords in such a
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manner that 'blandness' will be minimal. Given progressions
which meet this condition, a subsidiary goal is to arrange the
chords so as to assign longer durations to those chords which
occur least often in a segment. Random shuffling insures an
unbiased selection between progressions which the progran

otherwise judges equally suitable.

Figure 12-4: Profile of Demonstration 10 - Module and
chord numbers refer to Figures 12-2 and 12-3. The
'blandness' given for each segment reflects palrs of
consecutive chords sharing one or more common chromatic

degrees.

The humber of chords in any one segment ranges from 3 to 6.
Since the process of selecting chords for positions is
accomplished.with regard to order but without replacement and
since the size of the pool is 1n each case equal to the number of
positions, Equation 12-4 tells us that the number of possible

arrangements varies from 6 to 720.

Figure 12-5: Transcription of Demonstration 10.
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[sNoXe]

o w

program DEMO10
Demonstration of comparative search

parameter {MSEC=12,MPRG=54,MCHD=12,MPAT=4)

1nteger PCHPHT(MPHT MCHD) , DEGPHT(MPHT MCHD) ,NUMSEC(MSEC),
PHGSEC(MSEC) DUHPHG(MPRG) PDLPHG(MPHG) CHDPAG (MPRG)

common PCHPRT ,DEGPRT,NUMSEC, PRGSEC DURPRG, POLPHG CHOPRG

open (2,File='DEMO10.DAT' ,status="NEW"')
call CHORDS

call PROGRS

call ARPEGG

close (2)

stop

end

subroutine CHORDS
parameter (MSEC=12,MPRG=54,MCHD=12,MPRT=4 ,MPCH=5)
1nteger PCHFRT(MPHT MCHD), DEGPHT(MPHT MCHD) NUMSEC (MSEC),
PRGSEC(MSEC) DUHPRG(MFHG) PDLPRG(MPHG] CHDPRG (MPRG)
integer MODCHD(MCHD) , IDXPRT(MPRT) ,REGPRT (MPAT, MCHD),
PCHTMP (MPAT) ,DEGTMP (MPRT), USETMP[MPHT] QALTMP(MPRT),
OFFSET(MFCH),QALTVL(11),USEDEG(12)
logical PARALL
common PCHPRT,DEGPRT ,NUMSEC,PRGSEC, DURPAG ,POLPAG, CHOPRG
data MODCHD/1,1,1,2,2,2,2,2,3,3,3,3/
data OFFSET/0,1,-1,2,-2/
data QALTVL./1,49,343,2401,16807,7,16807,2401,343,49,1/
dets USEDEG/0,0,0,0,0,0,0,0,0,0,0,0/
data AEGPRT/44,48,53,57, 43,48,54,58, 42,47,54,59,
54,58,62,66, $4,58,62,67, 53,57,63,67,
s2,57,63,67, 52,57,63,68, 62,68,71,75,
61,67,71,76, 61,67,72,76, 60,86,72,77/

do (ICHD=1,MCHD)

LUSE = 10000000
LQAL = 10000000
IPRT = 1
IDXPRT(IPRT) = O
do

Increment index
IDX = IDXPAT(IPRT) + 1
if (IDX.le.MPCH) then
IOXPRT(IPRT) = IODX
IPCH = REGPRT(IPRT,ICHD) + OFFSET({IDX)
IDEG = MOD{IPCH,12) + 1
PCHTMP (IPAT) = IPCH
DEGTMP{IPRT) = IDEG
Test for duplicate degrees
do (I=1,IPRT-1)
if {DEGTMP(I).eq.IDEG) go to 47
repeat
Test for parallelisms
if (IPRT.ge.2) then
do (LCHD=1,ICHD-1)
if (MODCHO{LCHD).eq.MODCHO(ICHD)}) then
if (PARALL(PCHPRT(1,LCHD),PCHTMP(1),IPRT,2,FLAG)) go to 47
else if (IPRT.ge.3) then
if (PARALL(PCHPAT(1,LCHD),PCHTMP(1),1PRT,3,FLAG)) go to 47
end if
Test that current chord contains no more than
two degrees in common with any previous chord
if (IPAT.ge.3) then
K =10
do (I=1,IPRT)
do (J=1,MPRT)
if (DEGTMP(I).eq.DEGPRT(J,LCHD)) then
K=K+ 1
exit
end if
repeat
repeat
if (K.ge,3) go to 47
end if
repeat
end if
Evaluate contribution of this degree to chromatic redundancy
if (IPRAT.eq.1) then
USETMP(IPRT) = WSEDEG(IDEG)
else
USETMP(IPAT) = max0(USETMP{IPRT-1),USEDEG({IDEG))
end if
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67 c Compare maximum chromatic redundancy of current chord to
68 c that of best chord so-far obtained
69 if (USETMP(IPRAT).le.LUSE) then
70 c Evaluate contribution of this degree to sonorous quality
71 [ of current chord
72 if (IPRAT.eq.1) then
73 QALTMP(IPRAT) = O
74 else
75 K = QALTMP(IPRT-1)
76 do (I=1,IPRT-1)
77 INTRVL = IDEG-DEGTMP(I)
78 if (INTARVL.le.0) INTRVL = INTRVL + 12
79 K = K + QALTVL{INTRAVL])
80 repeat
81 ’ QALTMP(IPRT) = K
82 end if )
83 c Compare sonorous quality of current chord to that of best
84 [ chord so-far encountered
85 if (QALTMP{IPAT).1t.LOAL) then
a6 c Current chord still has fewer consonances
87 if (IPRT.eq.MPRT) then
88 Cc Current chord is complete:
89 c Update best chord
90 do {I=1,MPRAT)
91 DEGPART(I,ICHD) = DEGTMP(I) . .
a2 PCHPRT(I,ICHD) = PCHTMP(I)
a3 repeat
94 LUSE = USETMP(IPRT)
a5 LQAL = QALTMP(IPRT)
86 else
a7 c Current chord is incomplete: advance to next part
98 IPRT = IPRT + 1
9g IDXPAT{IPAT) = 0O
100 end if
101 end if . 3
102 end if
103 else
104 c Backtrack to previous part
105 IPRT = IPRT - 1
106 if (IPRT.1t.1) exit
107 end if
108 47 continue
108 repeat
110 c Update usage of chromatic degrees
111 do (I=1,MPRT)
112 IDEG = DEGPAT(I,ICHD)
113 USEDEG(IDEG) = USEDEG(IDEG) + 1
114 repeat
115 repeat
116 return
117 end
1 function PARALL{CHO1,CHO2,NPRT NLEV)
2 integer CHBO1(4),CHD2(4),PRTTMP(4)
3 logical PARALL
4 c
s LIM = NPRT - NLEV
6 ITMP = 1
7 PRTTMP{ITMP) = 0
8 do
=] IPRT = PATTMP{ITMP) + 1
10 if (IPAT.le.LIM+ITMP) then
11 PRTTMP(ITMP) = IPRT
12 if (CHD1(NPRT) - CHO1({IPRT)
13 H .eq. CHO2(NPRT) - CHD2{IPAT)) then
14 ITMP = ITMP + 1
15 if {(ITMP.eq.NLEV) then
16 PARALL = ,true.
17 return
18 else
19 PRTTMP(ITMP)} = IPRAT
20 end if
21 end if
2e . else
23 if (ITMP,.eq.1) exit
24 ITMP = ITMP - 1
25 : end if
26 repeat
27 PARALL = .false,
28 return
29 end

'r - ﬂ‘ e ' "‘Y‘V‘ e p‘vmmnmm. A PR K
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4 subroutine PROGARS
2 parameter (MSEC=12,MPRG=54,MCHD=12,MPRT= 4 ,MTMP=6)
3 1nteger PCHPHT(MPHT MCHD) , DEGPHT(MPHT MCHD) NUMSEC(MSEC),
q PHGSEC(MSEC) DUHPRG(MPHG) POLPRG(MPHG) CHDPRG (MPRG)
S integer PAGTMP (MTMP ) , CHOTMP (MTMP )} ,BLNTMP (MTMP ) , BLNCHD ( MCHD ,MCHO) ,
6 SCOTMP (MCHD) ,SCDCHD(MCHD) ,USETMP (MCHD) , USECHD(MCHD]
7 common PCHPRT ,DEGPRT,NUMSEC ,PRGSEC, DURPAG , POLPRG ,CHOPRG
8 data SCDTMP/1,2,3,4, 5 6,7,8,9,10, 11 12/
9 data SCDCHD/1,2, 3,4,5,5,7,8,9 10,11,12/
10 data USETMP/0,0,0,0,0,0,0,0,0,0, D O/
11 data USECHD/D,D o,0,0,0,0,0,0,0,0,0/
12 c .
13 - [ Analyze chords for common chromatic degrees
14 do (ICHD=1,MCHD)
15 do (LCHD=1,MCHD)
16 K =0
17 do (IPRT=1,MPAT)
18 IOEG = DEGPRT(IPRT,ICHD)
19 do (LPRT=1,MPRT)
20 if (1DEG.eq.DEGPRT{LPRT,LCHD)) then
21 K=K+ 1
a2 exit
e3 end if
24 repeat
a5 repeat
26 BLNCHO(LCHDO,ICHD) = K
27 . repeat
28 repest
29 c
30 [ Arrange chords of each module inmto best progression
31 ICHDO = 0
32 do (ISEC=1,MSEC)
33 LPAG1 = PRGSEC(ISEC)
.34 : NUM = NUMSEC(ISEC)
- 35 call SHUFLE(POLPRG(LPRG1},NUM)
36 LPRG2 = LPRG1 + NUM
37 ITMP = 1 ’
38 LPRAG = LPRG1
39 PRAGTMP(ITMP) = LPAG1 - 1
40 LBLN = 10000000
41 USETMP(SCDTMP(1)) = 10000000
a2 do
43 IPRG = PRGTMP(ITMP) + 1
a4 if (IPRG.1t.LPRG2) then
45 PAGTMP(ITMP) = IPRG
46 c Determine chord
a7 ICHO = POLPRG(IPRAG)
48 CHOTMP(ITMP) = ICHO
49 USECHD(ICHD) = USECHD(ICHD) + DURPRG(LPRG)
S0 o4 Insure selection without replacement
51 do (I=1,ITMP-1)
52 if (PRGTMP(I).eq.IPRG) go to 47
53 repeat
54 c Evaluate common-tone linkages in current progression
55 . if (ITMP.eq.1) then
56 if (ICHDO.gt.0) BLNTMP(ITMP)} = 73 (BLNCHD(ICHD,ICHDO))
57 else
58 BLNTMP{ITMP) = BLNTMP(ITMP-1)
59 : + 743 (BLNCHD(ICHO,CHOTMP(ITMP-1))-1)
60 end if
€1 c Compare current progression to best progression
62 c so-Far encountered
63 if {BLNTMP(ITMP).le.LBLN) then
64 c - Progression still has fewer common-degree linkages
65 if (ITMP.ge.NUM) then
66 c Progression is complete
67 call LSORT{SCDCHD,USECHD,MCHD)
68 if (BLNTMP(ITMP).eq.LBLN) then
[23=] c Same common-tone linkages: compare progressions
70 c for relative usage
71 do (LCHO=1,MCHD}
7a LUO = USETMP(SCDTMP(L.CHO})
73 LU1 = USECHD(SCOCHBR(LCHD))
74 C1F (LUD.gt.LU1) exit
75 if {LUD.1lt.LU1) go to 47
76 repeat
77 if (LCHDO.gt.MCHD) go to 47
78 end if
79 L = LPRG1
80 do (I=1,NUM)
81 CHDPRG(L) = CHDTMP(I)
a2 ) L =L + 1
83 repeat
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84
85
a6
87
88
as
S0 c
g1
82
93
94
95
96
7
a8
99
100
101
102
103
104

Page 4

do (LCHD=1,MCHD)
USETMP(LCHD) = USECHD(LCHD)
SCOTMP(LCHD) = SCDCHO(LCHO)
repeat
LBLN = BLNTMP(ITMP)
else
Progression is still incomplete: advance to next chord
ITMP = ITMP + 1
LPRG = LPRG + 1
PAGTMP(ITMP) = LPRAG1
go to 49
end if
end if
else .
if {(ITMP.eqg.1) exit
ITMP = ITMP - 1
LPAG = LPRG - 1
ICHD = CHDTMP(ITMP)
end if
47 USECHD({ICHD) = USECHD(ICHD) - DURPRAG(LPRAG)
49 continue
repeat
do {LCHD=1,MCHD)
USECHD(LCHO) = USETMP(LCHD)
SCOCHD{LCHD) = SCOTMP(LCHD)
repeat
ICHDO = CHOPRG(LPRG2-1)
repeat ' .
return
end
block data
parameter (MSEC=12,MPRG=54 ,MCHD=12,MPRT=4)
lnteger PCHPHT(MPHT MCHD) , DEGPHT(MFHT MCHD) ,NUMSEC(MSEC),
PHGSEC(MSEC) DUHPHG(MPHG) PULPHG(MPHG) CHDPRG (MPRG)
common PCHPRT,DEGPRT ,NUMSEC, PHGSEC OURPRG, FDLPHG CHDPRG
data NUMSEC/S,6,4,3,6,4,5,3,4,3,5,6/
data PRGSEC/1,6,12,16,19,25,29,34,37,41,44,43/
data DURPAG/13,18,16,10,12, 8,6,11,8,10,9, 17,11,14,10,
: 12,11,9, 8,8,9,6,11,11, 7,10,14,11, 9,11,6,8,11,
: 16,15,17, 14,10,12,9, 10,14,11, 8,8,10,7,9,
H 8,9,14,8,9,13/
data POLPRG/1,1,2,3,3, 4,5,5,6,7,8, 1,2,2,3, 9,10,12,
: 4,4,6,6,7,8, 9, 10 11 ,12, 5,5,7,8,8, 1,2,3,
H 9,10,11,12, 1, 2 3, 4,5,6,7,8, 9,9,10,11,11,12/
end
)
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12.3.2 Implementation
-- Programming example 12-2: program DEMO10 (4 pages) --

The comparative searches in program DEMO10, reproduced here
as example 12-2 (note 9), generalize the procedures employed by
" program CONCHD (heading 12-1): since several items of
information are necessary to describe each option selected by a
decislon, these items are organized into parallel stacks
accessible by a single index.

The symbols of program DEMO10 and its subroutines adhere to
five mnemonic "roots" pertaining to the various roles played by

information in the musical deslgn:

1. The mnemonic root CHD signifies information pertaining
to entire chords. The parameter MCHD gives the number
of chords, while the variable ICHD indicates specific
chords. In subroutine CHORDS, array element MODCHD(I)

indicates which module contains the Ith chord.

2. The mnemonic root PRT signifies information pertaining
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to individual parts within a chord. The parameter MPRT
gives the number of parts, while the recursive index
IPRT indicates specific parts. Array element
PCHPRT(I,J) gives the pitch selected by CHORDS for the
Ith part of the Jth chord, while element DEGPRT(I,J)

gives the corresponding chromatic degree.

The mnemonic root SEG signifies information pertaining
to individual segments. In particular, the parameter
MSEG gives the number of segments, while the varilable
ISEG indlcates the segment currently being composed.
Array element NUMSEG(I) gives the number of chordal
positions in the Ith segment; array element PRGSEG(I)
indicates the first position in the progression occuring

in the Ith segment.

The mnemonic root PRG signifies information pertaining
to the progression of chords. The parameter MPRG gives
the total number of chords in all segments combined,
while the recursive index IPRG indicates specific
positions in the progression. Array element DURPRG(I)
gives the duration allotted to the Ith position; array
element CHDPRG(I) indicates which of the 12 chords

occupies this position. Array POLCHD contains pools of
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chords to be used in each segment, stored in the
following way: for the Ith segment of the piece, set
IPRG=PRGSEG(I) and NUM=NUMSEG(I); then array elements
POLCHD(IPRG) through POLCHD(IPRG+NUM-1) hold the

appropriate pool of chords.

12.3.2.1 Chords - The outermost loop of subroutine CHORDS (lines
18-115) iterates on the variable ICHD, so as to initiate
comparative searches for each of the 12 chords.

The next-to-outermost loop (lines 23-114) provides the
recursive mechanism for each search. The level of recursion
corresponds to the current part, IPRT; array element IDXPRT(I)
gives the index to the option under consideration for the Ith
part. In this case, options consist of the registral locus
stored in array element REGPRT(I,ICHD) along with displacements
of one or two semitones above and below this locus.
Displacements corresponding to each index are stored in array
OFFSET (initialized in line 10); from the locus and
displacement, CHORDS computes a pitch (line 28) and degree (line
29). Arrays PCHTMP and DEGTMP store these values temporarily

until such time ag CHORDS determines whether the current
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candidate compares favorably or not to the incumbent. In the
former case, CHORDS proceeds to transfer values from PCHTMP and
DEGTHMP to more permanent residence in PCHPRT and DEGPRT;, at least
until a better chord is encountered.

The first thing CHORDS does when considering an option is to
check for doublings (lines 33-35), parallelism (lines 39-43 along
with the logical function PARALL), and chromatic overlap (lines
b6-57). Only when these constraints are satisfied does CHORDS
\attempt any heuristic evaluation.
| Evaluation of 'chromatic redundancy' employs arrays USEDEG
and USETMP. Array element USEDEG(I) tallies the number of
already-composed chords employ the Ith degree of the chromatic
scale, while element USETWP(J) holds the largest of these talllies
for the first J degrees in the candidate. CHORDS evaluates the
chromatic redundancy of each partial candidate (lines 61-66) by
selecting the maximum between the current degree's tally and
largest value for all previous parts; the variable LUSE gives
.the 'chromatic redundancy' of the incumbent.

Evaluation of 'sonorous quality' proceeds only when the
candidate is no more redundant than the incumbent. Array QALTVL
(initialized in line 11) indicates relative significances for
each type of interval from the semitone to the major seventh.
CHORDS considers only intervals between degrees, without regard

to inversion or octave displacement (lines 77-79). Since
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four-part chords are characterized by 6 intervals, significances

in QALTVL are expressed as powers of 7. Array element QALTMP(I)
'thecndt.aE

gives the contributions!of all intervals resulting from the first

I degrees, while the variable LQAL gives the 'sonorous quality'

of the incumbent.

12.3.2.2 Chordal Progression - PROGRS's main loop (lines 31-116)
‘iterates on the variable ISEG, so as to initiate comparative
searches for each of the 12 segments.

The loop immediately within this main loop (lines 41-115)
provides the recursive mechanism for each scarch. The level of
recursion corresponds to the position in the progresslon,
‘expressed two ways: the variable ITMP indicates the position
locally, within the segment, while the varliable LPRG indicates
thé position globally, relative to the entire piece. ITEMP
ranges from 1 to NUMSEG(ISEG). LPRG ranges from PRGSEG(ISEG) up
to -- but not including -- PRGSEG(ISEG)+NUMSEG(ISEG); for
efficiency, PROGRS stores the latter two positions in the holding
variables LPRG1 and LPRG2, respectively. Array element PRGTMP(I)
gives the index to the option under consideration for the Ith
position. In this case, optlons are drawn with regard to order

but without replacement from a pool of chords indicated by array
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elements POLPRG(LPRG1) through POLPRG(LPRG2). Array CHDTMP
stores these options temporarily untll such time as PROGRS
determines whether the candidate progression compares favorably
or not to the incumbent. In the former case, PROGRS proceeds to
transfer values from CHDTHMP to more permanent residence in
CHDPRG, at least until a better progression 1s encountered.

Prior to its first search, PROGRS analyzes each palr of
chords for common chromatic degrees (lines 14-28). Upon
completion of this aﬁalysis, afray element BLNCHD(I,J) gives the
number of degrees shared in common by the Ith and Jth chords. We
shall take this number as reflecting the relative 'blandness' of
progressing immediately from chord I to chord J. In deriving the
'plandnesses' for progressions of several chords, PROGRS assigns
greater significance to palrs sharing more degrees in common.
Since the maximum number of chords which PROGRS must arrange
within any segment is 6, significances of individual
'blandnesses' are expressed as powers of 7 (lines 54-60). Array
element BLNTWP(X) gives the 'blandness' of the first K chords
currently under consideration for the segment, while the variable
LBLN gives the lowest 'blandness' of the incumbent progression.

The method of evaluating statistical balance between the

e e pegeniy
chords is intriguing because #W consults t—e=

several keys whose relative significances vary according to

context. The keys themselves are cumulative durations stored in
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array USETMP. (This array bears no relation to the USETMP
appearing in subroutine CHORDS). Each time PROGRS selects a
chord for a position, PROGRS augments the appropriate element of
USETHMP by the position's duration (line 48); conversely, PROGRS
diminishes USETMP whenever it discards a chord (line 104). Array
SCDTMP holds pointers to each element of USETHMP; a call to LSORT
(1line 67) schedules these elements in descending order so that
the largest cumulative durations have the greatest significance
“‘in the vector. Arrays USECHD and SCDCHD hold cumulative
durations and an associated schedule for the best incumbent.
Comparisons between candidates and incumbents are undertaken only
when the program judges both progressions to be equally 'bland’.
PROGRS implements such comparisons by stepping through palrs of
durations in order of significance until it finds a pair which

differs. It then favors the chord with the smaller duration

(lines 68-78).

12.4 NOTES

1. We have encountered elementary algorithms for searching as
early as Chapter U4: subroutine SELECT uses a sequential

search, while subroutine QUICK uses a binary search.
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2. This work by Newell, Shaw, and Simon was but one component of
a general investigation of creative problem solving upon which

the modern discipline of "artificlal intelligence" is founded.

3. The rankings of major thirds as more consonant than minor
thirds and especially of tritones as more consonant than minor
seconds is somewhat arbitrary from a psychoacoustic standpoint.
However, such rankings remain fully valid as expressions of

. . " . Lo wvv\p:.-;;"'\‘uvu\ A ;9 chues,
stylistic preferences relative (o speclfic mweseemenaments-,

4. The shortcut is known in the jargon of artificial intelligence

as "alpha-beta pruning" (Knuth and Moore, 1975).

5. The chordal content of each segment was derived by an
auxiliary program which sampled randomly shuffled pools (chapter
5) in order both to insure a diverse selection of chords within
each segment and to balance the chordal resources numerically

over the course of the piece.

6. No pair of distinct chords may share more than two degrees,

due to the constraints upon the 12 chords.

7. The designation 'blandness' should be taken as an expression

of stylistic preference for the purposes of this piece only.
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8., A vector is a numeric description of a quality which employs
two or more numbers. For example, any position on a flat

) shrdeven
surface may be described relative to a £E=®d observer by a number
indicating the direction and another number indicating the

distance.

9. Since subroutine ARPEGG very closely resembles its counterpart
in program DEMO7 (heading 9.3.2), this subroutine is not included

in Example 12-2.

12.5 RECOIMENDED READING

Ames, Charles. "Protocol: Motivation, Design, and Productlon

of a Composition for Solo Piano", Interface, volume 11, number

3 (1982), page 213.
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