CHAPTER 11

MUSICAL DESIGN II: GRAMMARS

A grammar is a scheme of relationships which explains how
the elements of a structure join together into the whole. The
term itself derives from linguistics, which studies (among other
things) the nested structure of languages: how syllables
combine into words, words combine into phrases, phrases into
clauses, clauses into sentences, sentences into paragraphs,
paragraphs into chapters, and chapters into books (note 1).
However, similar principles have proven very useful for
explaining many non-linguistic structures, familiar instances
including y@&igénﬁé hierarchies, family trees, and musical
deSlgr\Eﬁe‘»wclmés eﬂ?m?\\';f-\/ o veny imfoﬁ'\‘ﬂvdf “'7P(° O‘F SWVWJ"C Q“‘m&u.\é’q
<«———The word #hievkmweryy properly denotes a religious
organization ("hieros" is Greek for "sacred"), and most such
organizations are characterized by the rule that each cleric has

exactly one direct superior: in the Catholic Church, for

example, a priest answers to his bishop, a bishop in turn answers
to his cardinal, and a cardinal answers to the pope. In general,

we shall designate any structure hierarchic if it obeys this
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rule. Hierarchies stand in contrast to structures whose units
may have multiple superiors. This situation occurs in family
trees, which are characterized by the (non-hierarchic) rule that

each offspring has exactly two parents of mixed gender. Figure

11-1 illustrates hierarchic and non-hierarchic structures.
}.t},.\._\’;ﬂ’)&—s- = '\')(uva»"‘o\'\\\tfs + v10v1~\/1(€~'u'M‘ CLK\FS,
Figure 11-1: Two grammatic structures - Diagram (a)
illustrates a hierachic structure, while diagram (b)
illustrates a geneological structure resembling a
family tree. The letters Il and F in diagram (D)

indicate male and female offspring.

Perhaps the most well-known figure among linguists is Noam

Chomsky. In his Syntactic Structures (1957), Chomsky

emphasizes two basic types of relationship between grammatic

units: phrase-structure relationships and transformations.

Phrase-structure relationships associate general units with more
specific ones. In typical applications, they elaborate upon (or
distill) the content of an utterance while leaving the general
structure unchanged; for example, gilven the general sentence
"Dogs like people", we can substitute the specific cases "My
German shepherds Soloman and Sheba" for "dogs", "positively
adore" for "like", and "mailmen" for "people"vto produce the

specific case, "My German shepherds Soloman and Sheba positively
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adore mailmen". Transformations change the structure of an
utterance while leaving the content (in some sense) unchanged. A
simple example is the transformation from active to passive
volce: "Dogs like people"”, has the same content as "People are
liked by dogs".

Chomsky further distinguishes between two types of

phrase-structure relationship: context-free and

context-sensitive. Context-free relationships depend solely

~upon information inherent in particular graumatic units and their
subordinates while context—sensitiverreltionships also
incorporate environmental considerations. Chomsky limits the
terms "context-free" and "context-sensitive" to hierarchic
grammars; however, one can Just as readily apply the distinction
in non-hierarchic situations. For example, we know that genetic
traits in children derive solely from their mothers and fathers,
so can regard genetic relationships as "context-free". By
contrast, character traits can also derive from aunts, uncles,
teachers, other children, and so on; character relationships are
therefore "context-sensitive". Another example is the Markov
chain: a "Oth" order Markov chain is context-free, while chains
of increasingly higher orders reflect increasing sensitivity to
the environment.

When a phrase-structure relationship enables us to deduce a

specific concept such as "My German shepherds Soloman and Sheba"
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from a more general concept such as "dogs", we call it a

production. Synthesis, or derivation, denotes the process

of taking a fairly general concept called an archetype (or
axiom) and applying a series of productions in order to obtain

a specific instance, or statement of this archetype. For
example, it required a series of three productions to synthesize
"My German shepherds Soloman and Sheba positively adore mailmen",
from "Dogs like people". The inverse of a production is a
~reduction, which induces general concepts from specific ones.

The inverse of synthesis is analysis, or parsing, which

induces archetypes from statements.
£

11.1 APPLICATION: GRAMMAR OF A MUSICAL CODING SYSTEM

In order to illustrate a grammar which is directly relevent
to both music and computers, we shall examine a musical coding
system developed by Alan Ashton (1970). Ashton's direct pupose
was to transcribe notated musical scores to be played by a
computerized organ, but his code 1is also ideal for direct digital
synthesis and it has been implemented in this capacity by the
author (1979). Since the number of notes in a score is typically

very large in elther application, the code must necessarily be
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extremely compact. TFor this reason, each letter in Ashton's code
functions as an independent symbol. Table 11-1 explains the
basic symbols, which have been modified slightly by the author in
order to extend the capabilities of rhythmic brackets. The code
also provides'features for describing nuances of articulation as
well as gradually evolving templ and dynamics; these features

have been omltted here for simplicity:

Table 11-1: Basic symbols of a musical transcription

code (after Alan Ashton).

Figure 11-3 illustrates how this coding system might be used

to transcribe measures 41-43 Igor Stravinsky's Variations:

Aldous Huxley in Memoriam (1965). The music appears in Figure

11-2.

Figure 11-2: Igor Stravinsky, Variations: Aldous

Huxley in Memoriam, measures 41-473,

Figure 11-3: Alphanumeric transcription of

Stravinsky's Variations.

The grammatic units of the coding system, listed by

decreasing level of generality, are:



Category

Digits
Letter names
Rest

Accidentals

Chordal brackets

Rhythmic neumes

Other rhythmic
symbols

Instrument

Layering brackets

Type

Natural
Flat
Sharp

Whole

Half

Quarter
Eighth
Sixteenth
Thirty-second
Sixty-fourth

Dot

Tie

Measure number
Measure restart
Barline

Time signature
Rhythmic brackets

Begin section
Restart section

KTQE\g" I~

Symbols

0123456789
ABCDEFG

R

3

R

&
M<integer>

<integer>-<integer>
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]
@<integer>
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1. compositions.

2. sections, layers,

3. measures,

4., parts,

5. tunesg,

6. rhythmic strings,

7. rhythmic events,

8. chords,

9. integers, pitches (tied pitches), rests, durations,
10. characters (see Table 11-1),

Table 11-2 works its way upward through this list, defining each
grammatic unit in relation to the more specific units. Notice
that several definitions are recursive (chapter 10); the
definition of a "tune", for example, admits nesting of rhythmic
brackets to arbitrary depth, while the definitions of "sectlons"
and "layers" allow large blocks of material to be spliced
together and/or superimposed in ever-increasing hierar&&es (note
2). The set of definitions taken as a whole describes the
grammar of the coding system.

Figure 11-4 illustrates how Figure 11-3's alphanumeric

transcription of measure 42 from Stravinsky's Variations is

grammatically structured. Figure 11-4 may be read in either of

two ways:
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1. Reading Figure 11-4 from the top downward traces the
behavior of an encoder as he derives details of his

~code from the gross notational structure of measure 42.

2. Reading Figure 11-4 from the bottom upward traces the
behavior of the translating program as it parses the

code into more general grammatic units.

It nmust be stresséd that the nomenclature given in the above list
is idiosyncratic to the coding system; a "tune" according to
Figure 11-4's Definition 10 has little to do with a "tune" as
conceived by a composer. Though the code strongly reflects the
grammay of traditional musical notation, it gives few insights

at all into true compositional relationships. Such relationships
matter not at all to the translating program, which requires
simply that the code be organized according to conventions which
give each symbol meaning: "5%DH" means nothing while "HD%5"
means a note (specifically, "half-note D natural five octaves
plus a major second above 32' C") only because the translating
program expects attributes of notes to occur in the following
order: duration, letter name, accidental, register. In general,
all encodings analyzable according to Table 11-2 will be
"meaningful" to the translating program, while other encodings

will invoke at least one error message.
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Figure 11-4: Grammatic structure of code for measure

42 of Stravinsky's Variations.

11.2 MUSICAL GRAMMARS

Musiclans have been conscious of nested structures since at

least the early nineteenth century. In his 1817 Theory of

Composition, Gottfried Weber describes an approach to composing

melodies in which a basic melodic line may bé ornamented (using
passing tones, neighboring tones, and so on) and the ornamental
tones may themselves be ornamented up to arbitrary levels of
complexity. The grammar associated with VWeber's approach is

functional in the sense that discrete notes serve directly as

grammatic units on all levels of generality; that is, some notes
are primary, some are secondary, others are tertiary, and so on.
We have encountered non-musical instances of functional grammars
in religious hierarchies and family trees, where each grammatic
unit corresponds to an individual person.

The most widely celebrated functional approach to musical

L - : uch e

analysis is Heinrich Schenker's system of graphlc4ﬁgég:$%

(1935). Schenker generalizes Weber's approach to embrace harmony
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as well as melody, and extends it to much more elaborate
constructs than single-note ornaments. He conceives of musical
structure as a sequence of lesser and greater goals, individually
manifest as discrete chords. The more significant goals appear
fairly infrequently and determine 'essential' direction, while
other goals occur as detours along the way.

Standing in contrast to functional grammars are

architec?ural (or "architectonic") grammars. Architectural
grammars’incorporate discrete elements only on their most
specific levels; these elements combine and recombine into
progressively larger aggregates as generality increases. While
functional and architectural structures are closely related in
the sense that every "functional" structure has an alternate
"architectural" description, the differences are very prominent
in practice. The grammatic units of natural languages such as
English and of artificial coding systems such as Alan Ashton's
are architectural, rather than functional; architectural
approaches to explaining actual musical structure include the
system devised by Alfred Lorenz (1924) to analyze the music of
Richard Wagner, the procedures for rhythmic analysis devised by
Leonard Meyer and Grosvenor Cooper (1960), and James Tenney's
method of analysis based upon principles of Gestalt psychology
(1964, 1980).

Though the majority of analytic approaches are strictly
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hierarchic, recent work by Ray Jackendoff and Fred Lerdahl (1983)
has applied non-hierarchic models to account for dualities of
function: elided phrases, common chords in traditional
modulations, and so on. Jackendoff and Lerdahl's approach 1is
highly eclectic; they promote analyzing structures from severai
independent perspectives using functional approaches generalizing
Schenker's and several architectural approaches, some

generalizing Meyer and Cooper's, others related to Tenney's.

11.2.1 Grammatic Levels

There is a plethora of nomenclature used to distinguish
grammatic levels. When designating levels by number, we
conventionally refer to the archetype as level 1, to direct
subordinates of the archetype as level 2, to subordinates of
these subordinates as level 3, and so on. More general units
traditionally reside at the "higher" levels of structure with the
archetype occupying the "apex"; however, more recent practice
has followed Chomsky by associating generality with "depth" and
designating the most specific level(s) as the "surface".

Schenker uses "background" to designate the level containing only

the most significant notes, one or more "middlegrounds", as less
L) (]
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significant notes are included, and "foreground" for the most
complete detail. In Tenney's nomenclature, a composition divides
into "sectlons", "segments", "sequenceg", "clangs", and
ultimately into "elements" (discrete sounds). The author prefers
to retain the traditional associlation between generality and
height while using geographic nomenclature to designate
particular levels. It will therefore be the convention of this
book to designate the most general level as "global", and to
descend in generality through one or more median levels (for

" examples, "regional" and "parochial") to the "local" elements.

11.2.2 Self-Similarity

A structure may be designated self-similar when similar

principles govern relationships at each grammatic level. Literal
self-similarity (when 'the whole is reflected in the parts')
sometimes projects an organic sense of unity, and this property
has led authors such as Bolognesi (1983) to regard self
similarity in itself as an aesthetic virtue. Tenney is less
mystic, arguing that sincé (according to Gestalt psychology) the.
"factors" affecting how listeners perceive musical relationships

are relatively independent of grammatic level, then analytic or
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compositional procedures should be similarly independent.

11.2.3 Compositional Grammars

Where analysts invariably work inductively from the specific
to the general, composers most often work deductively from
~general notions, elaborating these notions into a tangible
creation. For our purposes it is sufficient to realize that the

only information necessary to generate a grammatic structure is:
1. an archetype,

2. a set of one or more productions for deriving detalls

from generalities, and

3. instructions for selecting productions whenever more

than one production is applicable.

With this information, a program needs only to apply the

productions at first to the archetype and then recursively to
its own results until a fully detalled statement of the archetype

has been derived. Hierarchies are the simplest grammatic
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structures to program; to date, all compositions generated using
grammatic automata have been hierarchic (including both of the

demonstrations presented in this chapter).

11.2.3.1 James Tenney - James Tenney was the first composer to
automate consclously hierarchic procedures using a computer. He
_implemented three-tiered hierarchies in the composing programs
which produced his Phases for computer-generated tape (1963;

described 1949) and his Music for Player Piano (1964). Both

works divide at most general level into "sequences", each
characterized by a set of randomly selected means and variances
controlling such attributes of notes as duration, register,
amplitude, and spectral content; 1in Phases, these random means
and varlances are themselves subject to the sinusoidal evolutions
described earlier (heading 8.1.2). Each sequence divides into a
number of "clangs"; the means and variances for the sequence
served as parameters for random automata which generated new sets
of means and variance for each clang. Clangs in turn divide into
individual notes; the means and variances for the clang served
as parameters for random automata which selected attributes for
each note. Though Tenney's own programs were not recursive, such

an implementation is now easily conceivable.
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Figure 11-5: James Tenney, Bridge for two pianos,
excerpt from 28'00" to 29'00". Copyright 1984 James

Tenney.

With Bridge for two retuned pianos (1983/1984), Tenney
inserts the intermediate level of "element" between notes and
"clangs", so as to allow for chords, and extends his list of
controlled attributes to embrace not only registers but also
.- degrees. Bridge consists of three sections lasting
approximately 8, 13, and 21 minutes, and Tenney's hierarchic
"world" only becomes fully realized in the final section. The
initial section projects a wholly random environment expressing
the "world" of John Cage, while the middle section effects a
bridge from one world to the other.

—

/I_M?\e,wmw‘*c\%. U .
11.2.3.2 TFormal Approsstes - Curtis Roads and, later, Steven

Holtzman have implemented fully recursive utilities for
generating musical compositions from linguistic models. Road's
(1978) utility enables a user to describe a composition by
specifying an archetype along with a set of productions serving
to deduce a specific statement of this archetype. All grammatic

units are represented as abstract "tokens" whose functions are
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defined by the way they are used. There are two kinds of token,
"non-terminal" and "terminal"”, which Roads symbolizes using
upper-case and lower-case letters, respectively. Productions

take the form:
<ﬁon—terminal tokeny --> {string>

where string 1is any string of terminal and/or non-terminal
ﬁokens. Such productions may bhe interpreted as follows: rewrite
each occurance of non-terminal token as string . Productlon
are applied recursively until all non-terminals have been
removed. For example, suppose a user specifies the archetype

"ADA" and the non-recursive productlons:

A -> BCB
B - aba
cC --> ¢
D - d

Given these productions, Road's utility would apply the sequence
of rewrites depicted in Figure 11-6. Roads provides further
capabilities for defining productions with several possible
outcomes and for defining recursive producfions, that ig,
productions which include the same non-terminal token on both

sidesgs of the arrow.
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Figure 11-6: Generating of a statement from an
archetype by non-recursive productions - Capital
letters indicate "non-terminal" tokens; lower-case
letters indicate "terminal" tokens. The dot above each
line of text indicates which non-terminal character is

next up for processing.

Up to this point in the process, the varlous tokens
specifiedbto Road's utility could just as easily represent
spositions on a corporate organization chart as musical functions.
Statements achieve concrete musical meaning through a "mapping"
between the set of terminal tokens and a set of acoustic
"objects". The nature of these objects 1s defined by the user:
they may be discrete pitches, recorded sounds, statistical
"clouds", and so forth. In the simplest applications, each
terminal token will correspond to a single, distinct acoustic
object. However, the potential for less rigorous mappings gives
rise to two intriguing notions defined by Roads as "musical
synonyms" and "musical homonyms". Musical synonyms arise when
one terminal token maps into two or more objects; musical
homonyms arise when two or more terminal tokens map into the same
object.

Steven Holtzman's "generative grammar definitional language

for music" (1980) directly adopts Roads's approach to treating
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musical units as abstract tokens. Where Road's utility is
limited to context-free productions, however, Holtzman expands
Road's capabilities to include context-sensitivity and weighted
random selection. These features enable a user to describe
conditlonally random processes such as Markov chains, which

require recursive, context-sensitive productions such as the

following:
aX -- 20% aaX or 33% abX or 12% acX or 5% e
bX --> 12% baX or 20% bbX or 33% beX or 5% e
cX --> 33% caX or 12% cbX or 20% ceX or 5% e

Figure 11-7 illustrates how a possible realization might Dbe

generated by the above set of productions from the archetype

"aX". Notice that selecting an option containing the

non-terminal "X", causes the process to automatically reinitiate

a new production. Since each production provides a 5% chance of

selecting the terminal option "e", the length of chains generated
eadivg 4.2,2,3)

by the process follows a geometric distributioniws®h an average
CJLing

of 20 transitions per chain.

Figure 11-7: Generating a Markov chain from an
archetype by recursive productions with weighted random

selection.
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The generality éf Holtzman's utility is evident in the fact
that, given enough tokens, it is able to generate strings of
arbitrary complexity which conform wholly to the rules of
Ashton's musical coding system. Holtzman's utility also provides

rudiamentary musical transformations -- inversion, retrograde,

and transposition -- along with a facility for merging two

motives into a composite.

D (Ve *‘ ~;‘L\f—\ \>\ EANE *"\"K . \“1. cws . . i
11.2.3.3 ContextudlWhpreaches - In treating grammatic units

exclusively as abstract tokens, Roads and Holtzman attempt to
implement utilities which operate independently of a composer's
partlicular stylistié prejudices. Theoretically, any structure
with a finite number of terminals may be described abstractly;
in practice, the productions may soon become prohibitively
complex. A more expedient approach used by Kevin Jones and
independently by the author is to develop specific programs which
directly implement descriptive knowledge concerning each
grammatic unit. This knowledge may then be manipulated
numerically by the progran.

Jones's method (1981) involves carving chunks of musical
space into progressively smaller pleces until the program finally

obtains descriptions of individual notes. Grammatic units are
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described by pairs of boundaries in each musical dimension:
- starting and ending times t1 and t2, lowest and highest pitches

pl and p2, and softest and loudest dynamics dl and dZé
{unit> = <1,t2; pl,p2; d4i,d2>

Productions divide each unit into one or more sub-units by

specifying new boundaries for each sub-unit, as in the following:

<t1,t2; »pl,p2; d1,d2 - <til,t; pl,p; d1,& ‘
and <t,t2; p,p2; 4,d2>

(t1+t2)/2

(p1+p2)/2
(d1+d2)/2

o oF
N

The author's composition Crystals for 16 strings (1980;
described 1982) derives directly from Tenney's Gestalt theories,
though it resembles Jones in its implementation. Iy procedures
incorporate the use of feedback from previous levels to help
insure that the products conform#® to certain initially
prescribed characteristics. For example, if in a given section
of the work it had been prescribed that only two simultaneous
parts should be present, the program would check to see if a
branch into two simultaneous parts had occured at a higher level.
If so, then the program would not branch again. If not, then the

program would branch with a probability 1/n, where n denotes the
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number remaining opportunities to branch (including the current
level). Crystals also incorporates sensitivity to both degree
and register. Figure 11-8 illustrates the process involved in

generating one (hypothetical) section of this work.

Figure 11-8: Generative process in Charles Ames's
Crystals (1980) - Reprinted from "Crystals:
Recursive structures in automated composition”,

Computer Music Journal, volume 6, number 3 (1982).

Copyright Charles Ames 1982.

11.3 DEMONSTRATION 8: A FUNCTIONAL GRAIMAR

Demonstrations 8 and 9 illustrate two ways of programming
computers to generate complex musical statements given an
archetype and a set of fairly simple productions. Demonstration
8 consists of three consective versions (variations) of a basic
tune -- or in linguistic jJargon, three consecutive statements of
an archetype. Each successive variation ornaments the tune by
increasing degrees of embellishment. The grammar of
Demonstration 8 is "functional" in the sense that the notes of

the basic tune directly constitute grammatic units at the highest
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structural level, while all other notes may be regarded as
"ornamental" with varying levels of significance. The
productions used to embellish both the basic tune and the
higher-level ornaments are drawn from traditional formulae:
seconds are embellished by elther "escaping tones" or "reaching

tones"; thirds by changing-note groups ("cambiatas").

‘11.3.1 Compositional Directives
Figure 11-9: Basic tune of Demonstration 8.
Figure 11-10: Productions in Demonstration 8.
Figure 11-11: Transcription of Demonstration 8.

The basic tune is i1llustrated in Figure 11-9, while the
ornaments appear in Figure 11-10. Notice that the basic tune and
each of the ornaments consists solely of seconds and thirds. It
is this constant property which enables the ornamenting proceés
to be applied recursively up to five levels (counting the
archetype as level 1): not only does the program elaborate upon

the tune i1tself, but also upon the ornaments, upon the ornaments
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on the ornaments, and so on. Notes from the basic tune receive
durations of 8 sixteenths; ornamental notes receive durations of

5, 3, 2, and 1 sixteenth, depending on their recursive levels.

11.3.2 Implementation

-- Programming example 11-1: program DENOS8 (3 pages) --
\/x/¢££; trick to implementing a hierarchic composing process 1is
to set up a stack (heading 10.2.2), or a collection of parallel
stacks, so that all of the attributes characterizing a grammatic
unit at an arbitrary level of sgégi;%ggnce can be accessed using
a single index. The composing program then resolves into a main

loop which handles the level of recursion along with subsidiary

procedures for deducing lower-level units from higher-level ones.

11.3.2.1 Main Program - Program DEMO8 proper keeps track of
Demonstration 8's three versions and inserts a rest between each
one. It also passes a value from array EMBVER to the first
location of array EMBLEV; this value controls the number of

nested ornaments.



1 program DEMO0S
2 c .
3 c’ Oemonstration of functional grammar
q c
5 parameter (MPCH=5,MDEG=12,MLEV=5,MLEV1=6,MVER=3)
6 real EMBLEV{MLEV) ,CUMDEG (MDEG) ,DURLEV(MLEV1)},RSTLEV(MLEV),
7 EMBVER{MVER)
8 integer TUNE(MPCH) , IDXLEV{MLEV)},CNTLEV(MLEV) ,PCHLEV(MPCH,MLEV)
=] common LEVEL ,LEVEL1,IPCH1,IPCH2,
10 TUNE, IDXLEV CNTLEV PCHLEV EMBLEV,CUMDEG,DURLEV,RSTLEV
11 data EMBVEH/1 5, 3. 0 4.5/
12 c
13 open (2,File="DEMD8.DAT',status="NEW')
14 ITIME = O
15 IVER = 1
16 do
17 c Compose version
18 EMBLEV(1) = EMBVER(IVER)
19 call COMPOS(ITIME)
20 c Increment version count
21 IVER = IVER + 1
e2e Cc Test for end of composition
23 if (IVER.gt.MVER) exit
24 Cc Write pause between versions
25 call WNOTE{ITIME,(16.-Float(MOB(ITIME,8))),0)
26 repeat
27 close (2)
28 stop
29 end
1 subroutine COMPOS({ITIME)
2 parameter (MPCH=5,MDEGz=12,MLEV=5,MLEV1=6)
3 real EMBLEV(MLEV),CUMDEG(MDEG) ,DURLEV({MLEV1) ,RSTLEV{(MLEV)
4 integer TUNE(MPCH),IDXLEV(MLEV),CNTLEV(MLEV),PCHLEV(MPCH,MLEV)
5 common LEVEL ,LEVEL1,IPCH1,IPCHZ,
6 TUNE, IDXLEV,CNTLEV,PCHLEV ,EMBLEV ,CUMDEG ,DURLEV,RSTLEV
7 c
8 c Initimlization
=] o]
10 LEVEL = 1
11 IDXLEV(LEVEL) = O
12 CNTLEV(LEVEL) = MPCH
13 do (I=1,MPCH)
14 IPCH = TUNE(I)
15 PCHLEV{I,LEVEL) = IPCH
16 IDEG = MOD(IPCH,12) + 1
17 CUMDEG(IDEG) = CUMDEG(IDEG) + DURLEV(LEVEL)
18 repeat
19 call WNOTE(ITIME,DURLEV(LEVEL),PCHLEV(1,1))
20 c
21 c Main composing loop
22 c
23 do
24 c Increment index
25 IDX = IDXLEV{LEVEL) + 1
es if (IDX.1lt.CNTLEV(LEVEL}) then
27 IDXLEV(LEVEL) = IDX
28 [ Oetermine starting and goal pitches
29 IPCH1 = PCHLEV(IDX,LEVEL)
30 IPCH2 = PCHLEV(IDOX+1,LEVEL)
31 LEVEL1 = LEVEL + 1
32 if (IPCH1.eq.0) then
33 c Cannot ornament a rest
34 call WNOTE(ITIME,DURLEV(LEVEL1),IPCH1)
35S else
36 if (IDX.gt.1) call WNOTE(ITIME,DURLEV(LEVEL),IPCH1)
37 if (EMBLEV{LEVEL)}.gt.0.0 .and. IPCHZ2.ne.0) then
38 call DEDUCE
38 c Advance to next level
40 LEVEL = LEVEL1
a1 IDXLEV(LEVEL) = 0O
42 end if
43 end if
44 else
45 c Backtrack to preceding level
46 if (LEVEL.eg.1) exit
a7 LEVEL = LEVEL - 1
48 end if
43 repeat
50 call WNOTE(ITIME,DURLEV(1),PCHLEV(MPCH,1))
51 return
g2 end
-~ ! *
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DEMOS8.FOR Page 2
1 subroutine DEDUCE
2 parameter (MPCH=5,MDEG=12,MLEV=S ,MLEV1=6)
3 real EMBLEV{MLEV),CUMDEG(MDEG) ,DURLEV(MLEV1),RSTLEV{MLEV)
4q integer TUNE(MPCH), IDXLEV(MLEV) CNTLEV(MLEV) PCHLEV(MPCH MLEV)
] integer PTROAN(S), INCDHN(S) NUMDHN(S) OHNMNT(GD) SCHED(S]
5] logical SUCCES
7 common LEVEL,LEVEL1,IPCH1,IPCHZ,
8 : TUNE, IDXLEV CNTLEV PCHLEV,EMBLEV,CUMDEG, DURLEV ,ASTLEV
=] data PTHDHN/49 25, 9 3, 0, 1, 5, 13 37/
10 datas INCORN/ 2, 2, 1, 1, o, 1, 1, 2, 2/
11 data NUMORN/ 6, 6, 4, 2, 0, 2, 4, 6, &/
12 data ORNMNT/-2, 3,
13 H -3, 2,
14 H -1, 3, -2, 4q,
15 H -3, 1, -4, 2,
16 : -1, 2, 4,4, 1,5, -2,1, -2, 2, 2,5,
17 : -1,-4, -1,-5, 1,-2, -2,-5, 2,-2, 2,-1,
18 H -1, 2, -1, 3, 4,5, -2, 2, 2,85, 2,86,
19 H -1,-5, 1,-2, 1,-3, -2,-5, -2,-6, &,-2/
20 data HUGE/1000000./,TINY/-1./
21 (o]
22 o] Decide whether or not to ornament at this level
23 c
24 if ( .not.SUCCES(EMBLEV(LEVEL)/float(MLEVI-LEVEL)) ) then
a5 CNTLEV(LEVEL1) = 2
26 EMBLEV(LEVEL1) = EMBLEV{LEVEL)
ez PCHLEV({1,LEVEL1) = IPCH1
28 PCHLEV(2,LEVEL1) = IPCH2
29 return
30 end if :
31 EMBLEV(LEVEL41) = EMBLEV(LEVEL) - 1.0
32 (o]
33 c Determine form of ornament
34 [
35 I = IPCH2 - IPCH1 + S
36 IPTR = PTRORN(I)
37 INC = INCOBN(I)
38 NUM = NUMORN(I)
38 c Assemble schedule of NUM pointers in random order
40 do (IORN=1,NUM)
41 SCHED(IOHN) = IPTR
a2 IPTR = IPTR + INC
43 repeat
44 call SHUFLE (SCHED,NUM)
45 [
46 c Select ornament with greatest chromatic interest
47 [o]
48 CUMO = HUGE
43 do (IDXORN=1,NUM)
S0 CuUM1 = TINY
.51 LPTA = SCHEO(IDXORN)
52 L = LPTR
53 do (INC times)
s4 CUM1 = amax1{CUM1,CUMDEG(MOD(IPCH1+0OANMNT(L),12)+1))
55 L =tr + 1
56 repeat
57 if (CUM1.1t.CUMQO) then
58 CUMO = CuM1
59 IPTR = LPTR
60 end if
61 repeat
62 c
63 c Pass pitches and update cumulstive history
64 Cc
65 CNTLEV(LEVEL1) = INC + 2
66 PCHLEV(1,LEVEL1) = IPCH1
67 I =2
68 do (INC times)
69 IPCH = IPCH1 + ORNMNT(IPTR)
70 PCHLEV(I,LEVEL1) = IPCH
71 IDEG = MODO(IPCH,12) + 1
72 CUMDEG(IDEG) = CUMDEG(IDEG) + DURLEV(LEVEL1)
73 I =1+ 1
74 IPTR = IPTR + 1
75 repeat
76 PCHLEV(1,LEVEL1) = IPCH2

L £ - | Q'Ynx Q)g/ e 5 Q "3)\\
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77
78
79
80
81
a2
a3
84
a5
as
a7
88
as
S0
91
g2
83

SO0ODDONDUDWN -

Y

Page 3

Insert rest

if (SUCCES(ASTLEV(LEVEL))) then
J = IAND(INC+1) + 1
I = CNTLEV(LEVEL1) + 1
"CNTLEV(LEVEL1) = I
do
I1=1I -1
PCHLEV(I,LEVEL1) = PCHLEV(I1,LEVEL1)
if (I1.eq.Jd) exit
I = 1I1
repeat
PCHLEV(J,LEVEL1) = O
end if
return
end

block data
parameter (MPCH=5,MDEG=12,MLEV=5,MLEV1=B)
real EMBLEV{MLEV) ,CUMDEG(MDEG) ,DURLEV(MLEV1) ,ASTLEV(MLEV)
integer TUNE(MPCH),IDXLEV(MLEV),CNTLEV(MLEV),PCHLEV(MPCH,MLEV)
common LEVEL ,LEVEL1,IPCH1,IPCH2,
TUNE, IDXLEV CNTLEV PCHLEV EMBLEV,CUMDEG,DURLEV ,RSTLEV
data CUMDEG/D.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0./
data TUNE/55,53,57,56,60/
data DUHLEV/B.,S.,E.,2.,1.,0./
data ASTLEV/0.111,0.167,0.250,0.333,0.500/
end

Cv U (F‘“\t EEN)
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11.3.2.2 Recursive Processing - The heart of the compositional
process 1s subroutine COMPOS. COMPOS keeps track of the levels
of recursion, each of which ornament a melodic fragment passed
down from the previous level. The variable LEVEL indicates the
~level of recursion, array element CNTLEV(LEVEL) indicates how

- many items occur in a fragment, and array element IDXLEV(LEVEL)
indicates which of these items is currently under consideration.
For increased economy, COMPOS transfers this value to the holding
varible IDX. The pitch of the current item is stored in array
element PCHLEV(IDX,LEVEL). For LEVEL=1, COIPOS initializes
PCHLEV to the basic tune (lines 13-18), which is specified to the
program as array TUNE in line 8 of the BLOCK DATA subroutine.
Items at lower levels may be either notes or rests; rests are
represented as notes with null pitches. For each item in the

fragment but the last, COMPOS performs the following actions:

1. If the current note or rest occurs at the current level
of ornamentation, COMPOS directs subroutine WNOTE to
append it to the mnemonic listing (line 34 for rests,
line 36. for notes). The duration of a note is stored in

array element DURLEV(LEVEL) as specified in line 9 of
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the BLOCK DATA subroutine; COMPOS selects durations of
rests as if the level of ornamentation were increased by

one (line 34).

2. If 1) neither the current item nor its immediate
successor are rests and 2) the limit (stored in array
‘element EMBLEV(LEVEL)) has yet to be reached, then
COMPOS requests subroutine DEDUCE to select a possible
‘ornament at the next level down (line 38) and then

advances to the next level (lines Lo-41),

The last note in a fragment at the current level is the same as
the next note in the fragment at the previous level, so COMPOS
backtracks one level (lines 46-47) when IDX reaches

CNTLEV(LEVEL) .

11.3.2.3 Productions - For each pair of consecutive pitches
paséed to it either by subroutine COMPOS, or by a prior level of
recursion, subroutine DEDUCE first decides whether or not to
ornament at the current level. The decision to ornament (lines
24-31) is a yes-or-no trial which incorporates feedback from

corresponding trials at higher levels in the manner of the RATIO
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ChmAm§453)
feature in Gottfried Michael Koenig's PROJECTZ2 program// The
likelihood of ornamenting is EMBLEV(LEVEL)/FLOAT(MLEV1-LEVEL),
where EMBLEV(LEVEL) holds the expected number of ornaments from

the current level down while the quantity FLOAT(MLEV1-LEVEL)

represents the number of levels (opportunities to ornament)
remaining. A decision to ornament cauées DEDUCE to reduce
EMBLEV(LEVEL) by one before passing it to the next level of
recursion. A decision not to ornament causes DEDUCE to skip the
- remaining actions and return immediately to COKPOS.

If it decides in favor of drnamenting an interval at the
current level, DEDUCE must first determine what kind of interval
it must ornament and locate a repertory of ornaments for this
interval among the eight repertories illustrated in Figure 11-10
(lines 35-44). All ornamental pitches are expressed in array
ORNMNT (lines 12-19) as offsets from the initial pitch. For each
of the eight intervals, array PTRORN holds a pointer indicating
which element of ORNMNT holds the first offset for the first
ornament in the corresponding repertory. Array INCORN holds the
number of ornamental pitches (1 for escaping or reaching tones, 2
for changing-note groups); incrementing the pointer by this
number gives successive ornaments in the repertory. Array NUMORN
indicates the number of ornaments in the repertory.

Once 1t has established a schedule of pointers to each

ornament, DEDUCE next applies the methods of the library
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subroutine HEUR (heading 7.2) to select the ornament from the
repertory which makes the greatest contribution to chromatic
diversity (lines 48-61). 1In order to evaluate an ornamental
form, DEDUCE considers each ornamental degree (line 54) to
determine how much ﬁ&é% degree has already been used during the
composition. In the case of changing-note groups, which supply
two ornamental degrees, DEDUCE considers the most-used degree
(inner loop: 1lines 52-56). Among all of the ornaments in the
repertory, DEDUCE selects éﬁéﬁ ornament whose most-used degree
has been used least (lines 57-60). It then converts relative
offsets into specific pitches and passes these pitches to the

next recursive level (lines 65-76).

As its final action, DEDUCE performs a Bernoulli trial to
decide whether or not to include a rest in the ornament (lines
80-91)., If it decides favorably, DEDUCE inserts this rest

between two consecutive notes in the ornamented fragment.

11.4 DEMONSTRATION 9: AN ARCHITECTURAL GRANMMAR

Like Demonstration 8, Demonstration 9 i1s hierarchic;
however, the hierarchy of Demonstration 9 i1s architectural rather

than functional: beginning with an abstract description of the
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composition as a whole, the program recursively applies binary
and ternary divisions until, at the terminal level, only
descriptions of individual tonés remain. The composition
reflects Wagner/Lorenz in‘its superimposition of forms, Tenney in
its use of Gestalt pfinciples to project these forms, and both

Jones and the author in its implementation.

11.4.1 Compositional Directives

Figure 11-12: Profile of Demonstration 9, measures

1-51.

Figure 11-13: Transcription of Demonstration 9.
The archetype for Demonstration 9 1s described by:
1. the duration of the composition (2 minutes),
2. the range of the clarinet, and

3. the twelve degrees of the chromatic scale.

The productions of Demonstration 9 progressively refine this

description by dividing sections into subsections and then
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recursively treating each subsection as a section in its own

right. Of the two kinds of production,

Binary subsections are asymmetric; A --, a b

Ternary subsectlons are symmetric; A --» a b a

There are four binary modes and three ternary ones; each
specific mode is distinguished by the relative proportions
between durations of subsections.

In order to project the grammatic structure clearly, no
subsection exploits any registral and chromatic resources not
already inherent in the section which produced it. To emphasize
similarities between the two outer (a) subsections in ternary
divisions, DENO9 passes them identical resources. To emphasize
differences between between binary subsections and between (a)
subsections and (b) subsections in ternary divisilons, DENO09
passes them complementary resources. Each act of division deals
with registers by dividing the section's range into thirds,
treating the bottom two-thirds as one subrange and the top
two-thirds as another. It then passes one subrange to (a)
subsections and the other subrange to (b) subsections. With
regard to chromatic resources, each act of division derives two
distinct (though overlapping) subsets é}wthe set of chromatic

degrees characterizing the section. It then passes one subset to
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4 program DEMOS

2 c

3 c Demonstration of architectural grammar

4 c

5 parameter {MLEV=7 MDEG=12,MDIV=7 MCNT=3)

6 integer IDXLEV(MLEV),CNTLEV{MLEV),DIVLEV{MLEV) ,NUMLEV{MLEV)
7 integer DEGSCD(MOEG,MCNT,MLEV),CNTDIV(MDIV)

8 real DURLEV (MCNT ,MLEV),RSTLEV(MLEV),

=] : ALWLEV(MCNT ,MLEV) ,RHGLEV (MCNT ,MLEV)

10 real CUMDEG{MDEG) ,WGTDIV(MDIV),FACDIV(MCNT MDIV]}
11 common LEVEL ,LEVEL1,IDX,CNTLEV,DIVLEV,NUMLEV , DEGSCD,CNTDIV,
12 H DURLEV,RLWLEV,RHGLEV,ASTLEV,CUMDEG,WGTDEG ,FACDIV
13 c

14 c Initialize

15 [ : .

16 open (2,File='DEMOB.DAT',status="NEW')

17 LEVEL = 1

18 CNTLEV(LEVEL) = 1

19 . IOXLEV(LEVEL) = O
20 do {IDEG=41,MDEG)
21 DEGSCD(IDEG,1,LEVEL) = IDEG
22 CUMDEG{IDEG) = 1.0
23 repeat
24 DURLEV(1,LEVEL) = 120. * 8.
25 ALWLEV(1,LEVEL) = 40.
26 RHGLEV(1,LEVEL) = 68.
27 o]
28 o} Main composing loop
29 c
30 do
31 Cc Increment section
32 IDX = IDXLEV{LEVEL) + 1
33 if (IDX.le.CNTLEV(LEVEL)) then
34 IDXLEV(LEVEL) = I0OX
35 LEVEL1 = LEVEL + 1
36 if (LEVEL.1t.MLEV) then
37 [od Write rest or breask .
38 ifF (IDX.gt.1) call WNOTE(RSTLEV(LEVEL)},0,0.)
38 o] Deduce subsections

- a0 call DEDUCE

41 o] Advance to next level
42 LEVEL = LEVEL1
43 IDXLEV(LEVEL) = ©O
44 WGTDIV(DIVLEV(LEVEL)) = 0.0
45 ¢ else
46 o4 Write note
47 ‘call WNOTE(DURLEV(IDX,LEVEL),DEGSCO(1,IDX,LEVEL),
48 : RLWLEV(IDX,LEVEL)+RHGLEV(IDX,LEVEL})/2.0)
49 end if
50 else
51 if {LEVEL.le.1) exit
52 [ Backtrack to preceding level
53 LEVEL = LEVEL - 1
54 WGTDIV(DIVLEV(LEVEL)) = 1.0
S5 end if
56 repest
57 close (2)
58 stop
59 end

1 subroutine DEDUCE

e parameter {MLEV=7 ,MDEG=12,M0IV=7,MCNT=3)

3 integer IOXLEV(MLEV),CNTLEV(MLEV)},DIVLEV{MLEV),NUMLEV{MLEV)
4q integer DEGSCO{MDEG,MCNT,MLEV),CNTOIV(MDIV)

5 real OURLEV(MCNT ,MLEV)} ,RSTLEV(MLEV),

6 H RLWLEV{MCNT,MLEV) ,RHGLEV(MCNT ,MLEV)

7 real CUMDEG{MDEG )} ,WGTDIV(MDIV),FACDIV(MCNT ,MDIV)
8 real FUZDEG({MDEG)

=] logicasl SUCCES

10 common LEVEL ,LEVEL1,IDX,CNTLEV,BIVLEV,NUMLEV , DEGSCD,CNTDIV,
11 ’ H DURLEV ,RLWLEV,BHGLEV,RSTLEV,CUMDEG ,WGTOEG,FACDIV
12 C

13 Cc Select mode of division into subsections

14 [¥] :

15 : X = Float(MDIV-LEVEL+1) % RANF()

16 do (IDIV=1,MDIV)

17 W = WGTDIV({IDIV)

18 if {X.1lt.W) exit

19 X = X - W
20 repeat
21 LCNT = CONTBIV(IDIV)
22 CNTLEV(LEVEL1) = LCNT
23 DIVLEV(LEVEL1) = IDIV

oy :..amiv.tw rv»,w v-miv" ' . . ,1 cat -,.;.' e e ,.-,,,,‘ Lt ,.'" ;‘i \w.w"v --:v\ s




DEMDS.FOR ) Page 2
24 [»4
25 c Determine duration of each subsection
26 [ .
27 OUR = DURLEV(IDX,LEVEL)
28 REST = RASTLEV(LEVEL1)
29 if (LCNT.eqg.2) ther
30 C ) Binary divisions are asymmetric
31 ODUR = DUR - REST
32 " MDRE = IAND(2)
33 LESS = 3 - MORE
34 BURLEV(MORE,LEVEL1) = DUR * FACDIV(1,IDIV)
35 . DURLEV(LESS,LEVEL1) = DUR % FACDIV(2,IDIV)
36 . else
37 [ Ternary divisions are symmetric
38 REST = REST + REST
39 DUR = DUR - REST
40 do (I=41,LCNT)
41 DURLEV{I,LEVEL1) = DUR % FACDIV(I,IDIV)
42 repeat
43 end if
44 c
45 c Select registers
46 c
47 R = (AHGLEV(IDX, LEVEL) RLWLEV(IOX,LEVEL))/3.0
48 if (succes(o. 5)) then
49 A1 = RALWLEV(IDX,LEVEL)
50 A2 = R1 + R + R
51 A3 = A1 + R
52 R4 = RHGLEV(IDX,LEVEL)
s3 elce
54 A3 = ALWLEV(IDX,LEVEL)
55 R4 = A3 + A + R
56 A1 = R3 + R
57 ) A2 = AHGLEV(IOX,LEVEL)
58 end if
59 if (LCNT.eqg.2) then
[=]s] RLWLEV{1,LEVELL1) = R1
61 : RHGLEV{1,LEVEL1) = R2
62 ALWLEV(2,LEVEL1) = A3
63 AHGLEV(2,LEVEL1) = R4
64 else
65 RLWLEV(1,LEVEL1) = R1
66 " RHGLEV({1,LEVEL1) = Re
67 RALWLEV(2,LEVEL1) = R3
68 AHGLEV(2,LEVEL1) = R4
€9 RALWLEV(3,LEVEL1) = R1
70 ARHGLEV(3,LEVEL1) = R2
71 end if
72 C
73 c Select degrees
74 [+
75 c Schedule degrees
76 NUM = NUMLEV(LEVEL)
77 do {(I=1,NUM)
78 IDEG = DEGSCO(I,IDX,LEVEL)
79 CUMDEG(IDEG) = CUMDEG(IDEG) + REST
80 FUZDEG(IDEG) = CUMDEG(IDEG) »* RANF()
81 repeat
' 82 call DSORT(DEGSCO(1,IDX,LEVEL),FUZDEG,NUM)
83 c Levels 1-5 pass two Fewer degrees to levels 2-6
84 if (LEVEL.le.S5) then
85 c Pass those degress common to mell aubsections
a8 ’ do (I=1,LCNT)
87 do (J=1,NUM-4)
88 DEGSCD(J,I,LEVEL1) = DEGSCOD{J,I0X,LEVEL)
89 repeat
.80 repeat
91 c Fill remaining positions
92 IDEG1 = DEGSCD(NUM ,10X,LEVEL)
93 IDEG2 = DEGSCO(NUM-1,I10X,LEVEL)
94 IDEG3 = DEGSCO(NUM-2,IDX,LEVEL)
85 .- IDEG4 = DEGSCD(NUM-3,IDX,LEVEL)
98 if (LENT.eq.2) then
a7 DEGSCO(NUM-3,MORE,LEVEL1) = IDEG1
s8 ' DEGSCD(NUM—E,MOHE,LEVEL1) = IDEG2
99 DEGSCO{NUM-3,LLESS,LEVEL1) = IDEG3
100 DEGSCO(NUM-2,LESS,LEVEL1) = IDEG4
101 DURA1 = DURLEV(LESS,LEVEL1)
102 DUR2 = DURLEV{MORE,LEVEL1)

WU -2 LNQ_ 24 3)
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103 else

104 DEGSCD({NUM-3, 1,LEVEL1) = IDEG1

105 DEGSCD(NUM—2,1,LEVEP1) = IDEG2

1086 DEGSCD(NUM-3,2,LEVEL1) = IDEG3

107 DEGSCO(NUM-2,2,LEVEL.1) = IDEG4

108 DEGSCD(NUM-3,3,LEVEL1) = IDEG1

108 DEGSCO(NUM-2,3,LEVEL1) = IDEG2

110 DUR1 = DURLEV(2,LEVEL)

111 DURZ = DURLEV(1,LEVEL1) + DURLEV({3,LEVEL1)

112 end if

113 o] Update cumulative history for eliminated degrees
114 CUMDEG(IDEG1) = CUMDEG(IDEG1) + DUR1

115 CUMDEG(IDEGZ) CUMDEG(IDEG2) + DUR4

noHaiy

116 CUMDEG({ IDEG3) CUMDEG(IDEG1) + DUR2
117 CUMDEG( IDEGA4) CUMDEG(IDEG2) + DUR2
118 elss
119 [»] Level 6 passes only one degree to level 7
120 IDEG1 = DEGSCO(1,IDX,LEVEL)
121 IDEGR2 = DEGSCD(2,IO0X,LEVEL)
122 c Pass degrees;  update cumulative history for eliminated degrees
123 if (LCNT.eq.2) then
124 DEGSCD(1,MORE,LEVEL1) = IDEG1
125 DEGSCD(1,LESS,LEVEL1) = IDEG2
126 CUMDEG(IDEG1)} = CUMDEG(IDEG41) + DURLEV(LESS,LEVEL1)
127 CUMDBEG(IDEG2) = CUMDEG(IDEGZ2) + DURLEV(MORE,LEVEL1)
128 else -
129 DEGSCO(1,1,LEVEL1) = IDEGH1
130 . DEGSCD(1,2,LEVEL1) = IDEG2
131 DEGSCD(1,3,LEVEL1) = IDEG1
132 CUMDEG(IDEG1) = CUMDEG(IDEG1) + DURLEV{2,LEVEL1)
133 CUMDEG(IDEG2) = CUMDEG({IDEG2)
134 B + DURLEV(1,LEVEL1) + DURLEV(3,LEVEL1)
135 end if
136 end if
137 return
138 end
1 block dats
2 parameter (MLEV=7 ,MDEG=12,MOIV=7,MCNT=3)
3 integer IDXLEV(MLEV),CNTLEV(MLEV),DIVLEV(MLEV),NUMLEV(MLEV)
4 integer DEGSCD(MDEG,MCNT,MLEV),CNTDIV(MOIV])
5 real DURLEV{MCNT ,MLEV] ,ASTLEV(MLEV),
] H ALWLEV({MCNT ,MLEV) ,RHGLEV(MCNT ,MLEV)
7 real CUMDEG(MDEG )} ,WGTDIV(MDIV) ,FACDIV(MCNT,MOIV)
8 common  LEVEL,LEVEL1,IDX,CNTLEV,DIVLEV,NUMLEV,DEGSCD,CNTDIV,
9 s DURLEV,RLWLEV,RHGLEV ,RSTLEV, CUMDEG ,WGTDEG,FACDIV
10 data WGTDIV/1.,1.,1.,1.,1.,1.,1./
11 data NUMLEV/12,10,8,56,4,2,1/
12 data CNTDIV/2,2,2,2,3,3,3/
13 data RSTLEV/13.,8.,5.,3.,2.,0.,0./
14 data FACDIV/.S00,.500,0.00, .556,.444,0.00,
15 : .571,.423,0.00, .600,.400,0.00,
16 H .285, .430,.285, .300,.400,.300, .308,.384,.308/
17 end
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CNTLEV(LEVEL) indicates how many sections occur occur in a group,
and array element IDXLEV(LEVEL) indicates which of these sections
is cufrently under consideration. The attributes characterizing
the current section are described in the following way:
. C reedes .
1. the duration of the current sectlon Msievred in array

element DURLEV(IDXLEV(LEVEL),LEVEL);

2. array elements RLWLEV(IDXLEV(LEVEL),LEVEL) and
RHGLEV(IDXLEV(LEVEL),LEVEL) hold lower and upper
boundaries, respectively, for a value which will
ultimately define the lowest pitch in a twelve-semitone

gamut; and

3. array element NUMLEV(LEVEL) indicates how many degrees
of the chromatic scale are exploited by the current
section, while the particular chromatic degrees
exploited in this section occupy array elements
DEGSCD(1, IDXLEV(LEVEL),LEVEL) through
DEGSCD(NDEG (LEVEL) , IDXLEV(LEVEL) ,LEVEL) .

For LEVEL=1, DEMO9 initializes these arrays so that at the global
level, we may regard Demonstration 9 as a degenerate section

(that is, a section with only one subsection). For LEVEL:=2
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LEvElL=6

through 6, DEMO9 articulates consecutive sections ﬂ§V;esta whose
. ves(des _ ,
duration# arE/sg%rvd in array element RSTLEV(LEVEL) (line 38).

It also handles all requests to WNOTE at level 6 (lines 47-48).

11.4.2.2 Productions - ~AMA~_

The first step in dividing a sectlons into subsections 1s to
TPV
select a mode of division (lines 15—29). Feedback in the

manner of Koenig's RATIO feature (heading 5.3) prevents any mode
of division from being used more than once along any vertical
path one might trace down through the structure. Array element
WGTDIV(I) holds the relative likelihood of selecting the Ith mode
of division. For LEVEL=1, each element of WGTDIV is set to 1.0,
so each mode has equal likelihood of selection. %%éﬁﬁgode IDIV
g;%;;lected %ﬁ level LEVEL, this value 1s stored in array element
DIVLEV(LEVEL) (line 23). WGTDIV(IDIV) is then cleared to 0.0
. s weed e ' od oy lewer fevel s\,
(line 44 of DEMO9) to prevent iI# from being reselected wntidh-the
composing process backtracks from level LEVEL, atlwhiph pdint
DEMO9 resets WGTDIV(DIVLEV(LEVEL)) to 1.0 (line 54 of DEM09).
Array element CNTDIV(IDIV) indicates whether the current
mode is binary or ternary; this number is transferred to the

holding variable LCNT. The mechanism for selecting durations of

subsections varies with LCNT as follows:
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1. If the mode of division is binary, then DEDUCE selects
the variable MORE to indicate the longer subsection
while selecting the variable LESS to indicate the
shorter subsection. DEDUCE selects either MORE=1,
LESS=2 or MORE=2, LESS=1 with equal likelihood. The
array element FACDIV(1,IDIV) holds the relative
proportion of the section's duration to be passed to the
longer (MOREth) subsection; element FACDIV(2,IDIV)

holds the shorter proportion (lines 31-35).

3

[N
2. If imsteatt the mode of division isYternary, then the

middle subsection is always the longest. Array elements
FACDIV(1,IDIV), FACDIV(2,IDIV), and FACDIV(3,IDIV) hold
the relative proportions of the section's duration to be

passed to each subsection (lines 38-42).

DEMO9 next computes ranges for each subsection (lines
47-71). A Bernoulli trial with probability 1/2 detefmines which
subranges go to which subsections.

Allocation of degrees to subsections (lines 76-136) most
heavily favors those degrees which have not been heavily
exploited elsewhere in the piece. Variables beginning with IDEG
indicate chromatic degrees, while array element CUMDEG(IpB®)

holds the total duration of all sections in which degree It has
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been eliminated up to the current point in the composing

process. DEDUCE determines which degrees to pass to which

subsections by assembling a schedule in which priorities are
apovl

based in a "fuzzy" manner (heading 9.2) Em values in CUMDEG

(lines 77-81):

1. At levels 1-5, all degrees in the schedule except for
the last four are passed to all subsections (lines

86-90). The last four degrees are treated as follows:

a. If the mode of division 1s bilnary, then DEDUCE
passes the first two degrees to the longer
subsection while passing the remaining two degrees

40 the shorter subsection (lines 92-95, 97-100).

b. If the mode of division is ternary, then DEDUCE
passes the first two degrees to the (a) subsections
while passing the remaining two degrees to the (b)
subsection (lines 92-95, 104-109). Notice that
durations of (a) subsections, summed together, are
consistently at least as large as durations of (b)

subsections.

2. The two degrees remaining at level 6 are handled
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similarly:

a. If the mode of division 1s binary, then DEDUCE
passes the first degree in the schedule to the
longer subsection while passing the remaining degree

to the shorter subsection (lines 120-121, 124-125).

b, If the mode of division is ternary, then DEDUCE
passes the first degree to the (a) subsections while

passing the remaining degree to the (b) subsection

(lines 120-121, 129-131).

This process works to balance chromatic resources over the whole
composition. DEDUCE complétes the feedback loop by increasing
CUMDEG(IDEG) for each IDEG eliminated from the Ith subsection by

DURLEV(I,LEVEL1), the duration of the subsection.

11.5 NOTES

1. While nested structures are by no means limited to languages,
it has been the linguists who have most systematically

investigated them. For this reason, we conventionally discuss
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nested structures using linguistic terminology.

2. The designations "tune", "rhythmic string", "rhythmic event",
"section", and "layer" are the author's. Ashton's original
system recognized only the measure as the most general grammatic
unit below the composition itself; however, more recent efforts
such as the author'é implementation (1984 version) and such as
the PLA language for musical composition developed by Bill
Schottstaedt (1983) incorporate fully recursive facilities for

encoding sections and layers.
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