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number,

2. The successor of any natural number is unique (e.g., no

two natural numbers share the same successor), and
3. No natural number has 1 as a successor.

Property (1) provides the basic mechanism: the successor of 1 is
2; the successor of 2 is 3, and so on. Properties (2) and (3)
-insure an infinite sequence of numbers which never wraps over
itself.

Recursive mathematics became fashlonable during the 1930's
with the study of "computable" functions, particularly in
association with Alan Turing's formal prototype of a programmable
computer (1936-7; see also the discussion by Kleene, 1952).
Turing was a mathematician, not an engineer, whose stated purpose
was to distill mechanical computations to their simplest atoms.
He postulated a machine whose actions are completely determined
by two numbers: one stored in an internal reglster, the other
situated on a magnetic tape at the reading-and-writing head.

Each individual action can alter the register, change the number
on the tape, and/or move the tape left or right by one unit.
Since each action potentially depends on values stored in the

register or written on the tape during one or more previous
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actions, the machine's behavior is clearly recursive. Simplistic
as Turing's design may seem, it can (given enough time, a large
enough register and a long enough tape) implement any calculation
executable on a real-life computer.

Recursion has also played fundamental roles in theoretic

disciplines other than mathematics. Examples include:

1. Logic: Kurt Goedel's startling proof (1931) that many

——

logical propositions are themselves unprovable

2. Artificial Intelligence: Claude Shannon's proposals

for automatic chess-playing (1950),

3. Linguistics: Noam Chomsky's taxonomy of grammars

(1957),

4, Theory of Art: George Stiny's and James Gip's

formulations of "shape grammars" in painting and

sculpture (1972),

8

%mcerum$
5. Theory of Music: the analytic %yStems of Lorenz

(1921), Schenker (1935) Meyer and Cooper (1960), Tenney
(1964), Jackendoff and Lerdahl (1983).
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Among compufer programmers, "recursion" usually refers
specifically to programs which are capable of 'invoking
themselves' using methods which will be described in this
chapter. Recursion in this sense is an extremely powerful
~technique of programming with applications to such diverse tasks
as sorting large amounts of data, processing grammatic structures
(for example, compiling algebraic expressions into sequences of.

machine instructions), and searching algorithms.

10.1 SELF-INVOKING PROGRAMS

To understand what 1t means for a program to "invoke"
itself, consider a simple application: computing terms of the
Fibonacci series. This series was formulated in 1202 by Leonardo
Fibonaccl to estimate how many progeny a pair of rabbits can
produce over a designated number of breeding periods. If we
denote the ith Fibonacci as F(i) and establish F(1)=1 and F(2)=2,
then Equation 10-1 gives a recursive formula which may be used to

derive all subsequent terms:

F(i) = F(i-1) + F(i-2) (Equation 10-1)
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Given F(1) and F(2), we may then use the procedure detailed in

Figure 10-1 to compute subsequent terms.

Figure 10-1: Calculating terms of the Fibonaccl
series. The vertical alignment illustrates how
successive terms serve in turn as input data for later

calculations.

Program FIBON1 illustrates how a programmer might implement
this process using a subroutine called TERIl which invokes itself.
TERIM is hypothetic because most ilmplementations of FORTRAN '77
disallow self-invoking subroutine calls. The reason for this
restriction 1s that when a subroutine invokes itself, it must be
able initially to set aside its variables and later to restore
these variables into force once the sub-invocation has run its
course. Subroutines encoded in such languages as ALGOL and its
descendents incorporate this ability implicitly in their calling
sequences, but FORTRAN subroutines do not. We shall see that the
extra sophistication in language 1s not really necessary --
indeed, the practice actually abuses the capabilities of an
ALGOL-1like language, which really have a different purpose -- but
for the moment it will be instructive to see what a self-invoking

subroutine call might look like:
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-- Programming example 10-1: program FIBON1 --

TERM's call to itself takes care of the shift in parameters, so
that what was originally Il becomes I2 in the new invocation
while what was originally ITERM becomes Il. Only one line of
subroutine TERM (line 3) is actually devoted to computing the
Fibonacci number. Another line (line 6) keeps track of the

level of recursion, denoted by the variable LEVEL, in order to

stop the vrogram when its task is complete. The level of
recursion indicates the number of nested invocations, or
equivalently, the number of returns which nust be executed by
TERIM before control 1s restored to the main program. Notice,
however, that TERM never gives itself a chance to execute a
return; it either calls itself or stops the program. The
resulting process 1is a simple feedback loop.

Program FIBON2 illustrates how a programmer would implement
the same process without a self-invoking subroutine. The
algorithm resolves into an iterative loop with LEVEL serving as
the index. The major difference between FIBON1 and FIBONZ2 is
that where FIBON!1 managed the shift in Fibonaccl terms and the

computation of levels implicitly trough nested calls to TERI,

FPIBON2 manages the same operations explicitly through direct

transfers.
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-- Programming example 10-2: progran FIBONZ2 --

The full power of recursive programming becomes manifest

when programs are capable of backtracking to earlier levels of

recursion. To understand backtracking, consider the problem of
enumerating all the distinct ways of choosing N items from a
collection of M. This elementary problem has many applications
to musical decision-making, including such problems as
enumerating all of the distinct triads in the major scale (N=3;
M=7) or enumerating all of the distinct seven-note scales in the
chromatic scale (N=7; M=12).

Figure 10-2 enumerates all of the ways of choosing 3 ltems
out of 7. In order to exclude redundant combinatlons, the
program must constrain the enumerating process so that 1) the
second choice is always larger than the first and 2) the third
choice is always larger than the second. The enumerating process
is recursive in the sense that it derives each combination by
selecting an item and appending it to a combinatlon containing
one fewer items.‘ The level of recursion corresponds to the
number of items. Thus, the shallowest level enumerates singlets,
the median level enumerates ways of appending items to each
singlet to produce duplets, and the deepest level enumerates ways

of appending items to each duplet to produce triplets.
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Figure 10-2: Choosing 3 items out of 7 - The leftmost
column of numbers shows choices of the first item in a
triplet, while the next two columns are each derived by
selecting one additional item and appending it to the
partial results obtained in the preceding column.
Branching arrows indicate where one choilce serves for

multiple triplets.

Program COMBN1 illustrates how a programmer might implement
this process using a self-invoking subroutine called PICK which
incorporates the ability to backtrack. Like its counterpart
subroutine TERM in program FIBONW1, PICK is unacceptable to most
FORTRAN '77 compilers. It serves here an illustrative purpose
only. Each nested invocation of PICK chooses one item for a

combination; +the maximun number of recursive levels is the

number of items per combination, N.

-~ Programming example 10-3: progran COMBN1 --

Program COMBN2 illustrates how a programmer would implement
the same process without a gself-invoking subroutine call. Notice
that in place of COMBN1's single variable INDX, COMBNZ2 requires
an array (also called INDX) to store indices for items chosen at

cach level of recursion. This array accomplishes explicitly what
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FORTRAN '77 would have had to do -- but could not have done --

implicitly for INDX in subroutine PICK.

-- Programming example 10-4: program COMBNZ --

10.2 DATA STRUCTURES

The FIBON and COWBH prograiis demonstrate two varieties of
recursion which have markedly different uses. The essential
difference between these two varieties lies in the conditvions
under which either process Comes to a halt. The first variety
terminates upon achelving a goal (or terminal) level: in the
case of the FIBON programs, & designated Fibonacci term. The
second variety of recursion bounces many times off of a goal
(terminal) level: in the case of the COMBN programs, the last
item in a combination. This second variety does not terminate
until the process returns to- the original level.

It is appropriate to call the first variety horizontal
recursion since most of its applications deal with sequential
decisions involving feedback -- Markov chains (Chapter 6) and
cumulative feedback (Chapter 7) are elementary examples.

Horizontal recursion often penetrates to extremely remote levels
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(note 1). A characteristic of horizontal recursion is that as
later levels of recursion are encountered, the earlier levels
become increasingly less relevant to the process at hand. More
elaborate implementations of horizontal recurslon than we have
seen with the FIBON programs may include capabilities for
backtracking (Chapter 14), but this characteristic holds firm
nonetheless.

We shall call the scecond variety vertical recursion

because many of its applications deal with hierarchic structures

£

in which the levels of recursion correspond to levels of
generality. Here the notion of recursive "depth"” retalns
meaning. Vertical recursion tends to remain falrly close to the
original level for the simple reason that the number of potential
goals increases exponentially with the number of recursive
levels. Unlike with horizontal recursion, the original levels
are periodically consulted and updated.

Before we delve any further into recursive processes, we
must first gain greater understanding as to how recursive
programs are able to distinguish between similar items of
information generated at different levels. The requirements of
horizontal and vertical recursion differ. Horizontal recursion
requires information only pertaining to the most recent levels;
prior to a certain point, information may either be discarded or

stored in a sequential file. The necessary data structure for
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such a prdcess is called a gueue. Vertical recursion requires
information pertaining to all levels up to and including the
present one; memory locations abandoned during a backtrack may
be reused when the level advances again. The necessary data

structure for vertical recursion is called a stack.

:10.2.1 Queues

Queues are uscful for deferring tasks which need to be
performed in a certain order and for retalning a limited history
of past actions. They are sequential lists of information
processed on a "first-in-first-out" basis. Illustrative of
queues are the roped-in pathways we now commonly find in banks.
Whenever a new customer arrives, he takes his position at the
taill of the line. ZEach time a teller becomes avallable, she
services the first customer at the head. The remaining customers

then move forward to fill the empty position.

10.2.1.1 Implementation - We can implement a queue in a computer

program declaring an array (or perhaps several parallel arrays if
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several elements of information pertain to each item) large
enough to accomodate all the items with which the computer must
conceivably store. Since it 1s time-consuming to shift each of
the items in an array whenever something is extracted, we can
implement a circular queue which leaves each item in one

position and keeps track of the head and talil by pointers.

Figufe 10-3 illustrates how these pointers "wrap.around" whenever

the physical boundary of the array 1ls reached.

Figure 10-3: Implementation of circular queues - Boxed
letters depict filled positlons in the queue, blank
boxes deplct empty positions. Insertions draw letters
from the "input" stream and place then in the queue;
extractions draw letters from the gqueue and place then

in the "output" stream.

The library subroutine PUT inserts single values into a
queue, while its counterpart, the library subroutine GET, serves
to extract such values. Each utility serves in conjunction with

the other, and each requires flve arguments:

1. ELEMNT - Value to be either placed in queue by PUT or
extracted from queue by GET. ELEMNT may be either a

real or an integer.
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2. TAIL - Pointer to taill of queue. TAIL must be an

integer.

3. HEAD - Pointer to head of queue. HEAD must be an

integer.

4. QUEUE - Queue. QUEUE must be an array of dimension

LENGTH whose type matches that of ELEINT.

5. ICNT - Number of elements stored in queue. When ICNT=0
the queue is empty; when ICNT=LENGTH, the queue 1s
full. ICNT must be an integer.

6. LENGTH - Maximum number of positions in queue.

PUT manipulates TAIL; GET manipulates HEAD.

-- Programming example 5-5: subroutines PUT and GET --

10.2.1.2 Application: An 8th-Order Markov Chain - To illustrate

the use of queues, we consider the problem of implementing an
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8th-order Markov chain of degrees selected from an F major scale.
Here, the selection of a degree depends on its eight most
immediate predecessors. With such a high order it becomes highly
impractical to implement Markov matricies (an 8-dimensional
matrix with seven elements per "side" would contaln well over
five million entries!), so it becomes necessary to compute
transition probabllities by formula.

Program DEGCHW implements such a formula. It assigns
'WGights so that the two immediliately preceding degrees have no
likelihood of selection, while earlier degrees 1lncrease 1n
likelihood with their position in the queue. Array SCLSCL gives
the repertory of scale degrees required by the library subroutine
SELECT, which in this application maps the lndex ISCL into
itself. Array SCLQUE holds the eight most recently used scale
degrees; array WGTQUE holds the weights assigned to each degree
on the basis of its most recent position in SCLQUE. Each
iteration of the main loop (lines 13-38) selects a scale degree
(lines 18-33), prints it (line 34), and places 1t in the queue
(lines 36-37; GET serves no purpose in this application beyond
making room in the queue for the next item). DEGCHN computes
weights of selection by determining the most recent occurance of
each degree in the queue (lines 18-23) and storing a weight
associated with this position in array WGTSCL (lines 25-31).

Table 10-1 traces the status of the queue and the weightings
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Queue:
Degrees and
Sum: 84.00

Queue:
Degrees and
Sum: 72.00

Queue:
Degrees and
Sum: 60.00

Quene:
Degrees and
"Sum: 49.00

Queue:
Degrees and
Sum: 38.64

Queue:
Degrees and
Sum: 29.34

Queue:
Degrees and
Sum: 21.78

Queue:
Degrees and
Sum: 21.78

Queue: Bb
Degrees and
Sum: 17.08

Queue: D
Degrees and
Sum: 17.08

Queue: E
Degrees and
Sump: 17.08

Queue: G
Degrees and
Sum: 17.08

Queue: c
Degrees and
Sum: 21.78

Queue: F
Degrees and
Sum: 17.08

Queue: Bb
Degrees and
Sum: 17.08

Queue: A
Degrees and
Sum: 21.78

Queue: D
Degrees and
Sum: 17.08

Queue: E
Degrees and
Sum: 17.08

Queve: G
Degrees and
Sum: 21.78

Queue: F
Degrees and
Stm:

21.78

F:12.0 G:12.0

weights:

RANF: .5686 Scaled value:
-—- ~—~- == —-= ~—-——- —— Bb
weights: F:12.0 G:12.0

RANF: .7238 Scaled value:
—— == —— — - Bb D
veights: F:12.0 G:12.0

RANF: .8441 Scaled valve:
-~ == -~ -- Bb D E
weights: F:12.0 G:12.0

RANF: .2870 Scaled value:
-- -- - Bb D E G
weights: F:12.0 G: .0

RANF: .7358 Scaled velue:
-= == Bb D E G C
weights: F:12.0 G: .0

RANF: .2973 Scaled vslue:
—- BB D E G C F
weights: F: .0 G: 1.0

RANF: .7355 Scaled velue:
Bb D E G C F Bb
veights: F: .0 G: 1.6

RANF: .1087 Scaled value:

D E G v T Bb A
weights: F: 1.0 G: 2.7

RANF: .3316 Scaled value:

E G c F Bb A D
weights: F: 1.6 G: 4.4

RANF: .8636 Scaled value:

G [ F Bb A D E
weights: F: 2.7 G: 7.3

RANP: .3776 Scaled value:

C F Bb A D E G
weights: F: 4.4 G: .0

RANF: .2290 Scaled value:

F Bb A D E G F
weights: F: .0 G: .O

RANF: .8525 Scaled value:
Bb A D E G F C
weights: F: .0 G: 1.0

RANF: 7111 Scaled value:

A D E G F C Bb
wveights: F: 1.0 G: 1.6

RANF: .6358 Scaled value:

D E ¢ F ¢ Bb D
weights: F: 1.6 G: 2.7

RANF: .6726 Scaled value:

E G F C Bb D A
weights: F: 2.7 G: 4.4

RANF: .9238 Scaled value:

G F C Bb D A E
weights: F: 4.4 G:°7.3

RANF: .1789 Scaled value:

F C Bb D A E F
weights: F: .0 G:12.0

RANF: .9108 Scaled value:

C Bbv D A E F C
weights: P: .0 G:12.0

RARF: .7963 Scaled value:

- .
} &Xh\ (0 “'\

A:12.0
47.76

A:12.0
52.11

A:12.0
50.64

A:12.0
14.06

A:12.0
28.43

A:12.0
8.72

A:12.0
16.02

A:12.0
2.36

A: .0
5.66

A: .O
14.75

Bb:12.0
Selected

Bb: .0
Selected

Bb: .0
Selected

Bb: 1.0
Selected

Bb: 1.6
Selected

Bb: 2.7
Selected

Bb: 4.4
Selected

Bb: .0
Selected

Bb: .0
Selected

Bb: 1.0
Selected

Bb: 1.6
Selected

Bb: 2.7
Selected

Bb: 4.4
Selected

Bb: 7.3
Selected

Bbv: .0
Selected

Bb: .0
Selected

Bb: 1.0
Selected

Bb: 1.6
Selected

Bb: 2.7
Selected

Bb: 4.4
Selected

c:12.0
degree: Bb

c:12.0
degree: D

c:12.0
degree: E

c:12.0
degree: G

c:12.0
degree: C

c: .0
degree: F

c: .0
degree: Bb

c: 1.0
degree: A

c: 1.6
degree: D

c: 2.7
degree: E

C: 4.4
degree: G

C: 7.3
degree: F

€:12.0
degree: C

c: .0
degree: Bb
c: .0
degree: D

C: 1.0
degree: A

C: 1.6
degree: E

C: 2.7
degree: F

C: 4.4
degree: C

c: .0
degree: Bb

D:

D:

D:

D:

D:

D:

D:

D:

D:

D:

D:

12.0

1.6

2.7

4.4

7.3

2.7

4.4

1.0

1.6

2.7

I

E:12.0

E:12.0

E:12.0

1.0

2.7

4.4

: 7.3

1.0

b - 14
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of the seven scale degrees as DEGCHN composes a chain of degrees.

The musical result appears in Figure 10-4.

-- Programming example 10-6: program DEGCHN --

-— Table 10-1 --

Figure 10-4: 8th-order Markov chain of degrees - The
results of the 8th-order Markov chaln traced in Table

10-1, transcribad into musical notation.

10.2.2 Stacks

Stacks are useful for deferring portions of tasks which
must be resumed at a later time. They are sequential lists of
information processed on a "last-in-first-out" basis.
Illustrative of stacks are the spring-loaded dish dispensers we
often encounter in cafeterias. Each time a busboy inserts a
clean plate into the dispenser, the spring contracts so that the
topmost position remains at a constant level. When a patron

removes a plate, the spring lifts another into position.
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10.2.2.1 Implementation - A programmer implements a stack in
FORTRAN by declaring an array (or perhaps several parallel arrays
if several elements of information pertain to each item) large
enough to accomodate all the items the computer could conceivably
need to store at once. The element holding the earliest item is
called the "bottom" of the stack, while the element holding the
most recently inserted item is the "top". Among computer
programmers it 1is conventional jargon to "push" information onto
a stack and "pop" information from a stack. As with the
implementation of the queue, wholesale shifting of items may be
avoided by using a pointer to keep track of the top (the bhottom
remains fixed at location 1). Array INDX in program CONBN2
serves as a stack whose top (the variable LEVEL) is manipulated
explicitly by the main program. Figure 10-5 illustrates the

mechanics of stack operations.

Figure 10-5 Implementation of stacks - Boxed letters aepict filled
positions in the stack, blank boxes depict empty

positions. Insertlons draw letters from the "input"

stream and place them in the stack; extractions draw

letters from the stack and place them in the "output"

stream.

In many cases it is useful to implement general
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stack-handling utilities such as the library subroutines PUSH and
POP, given below: PUSH places a single value onto a stack while
sts counterpart, POP, extracts such values. Like GET and PUT,
these subroutines serve in conjunction with one another. They

require the following arguments:

1. ELEMNT - Value to be either placed on stack by PUSH or
extracted from stack by POP. ELEMNT may be elther a

real or an integer.
5>, TOP - Pointer to top of stack. TOP must be an integer.

3. STACK - stack. STACK must be an array of dimension

LENGTH whose type matches that of ELEMNT.

. LENGTH (required by subroutine PUSH only) - Maximum

number of positions in stack.

When TOP=0, the stack is empty. When mOP=LENGTH, the stack is

full.

-- Programming example 10-7: subroutines PUSH and POP --
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10.2.2.2 Application: Partition/Exchange Sorting - One of the
more significant applications of stack-oriented recursion is the

partition/exchange sort or gquicksort. This algorithm for

sorting was developed by C.A.R. Hoare (1962), drawing on work by

R. Sedgewick; Xnuth describes 1t at length in Sorting and

Searching (1973). While less intuitive than the insertion sort
discussed in Chapter 9 (Heading 9.2), partition/exchange sorting

has great advantages for sorting large collections of items whose
‘keys are highly disordered. Given a well disordered collection

with I records, the average time required by a partition/exchange <ov ¥

for a disordered collection increases with

Nlog N,
e

while the average time required by an insertion sort increases

with

exce ||

However, insertion sorts over

partition/exchange sorts when collections are small or when the
order of items 1is close to sequential.

Figure 10-6 illustrates a partition/exchange sort in action.
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The basic procedure involves taking a reference item with key K

(in this case, the leftmost item) and partitioning the

collection of items into two sub-collections: one containing
only items with keys not larger than K, the other containing only
items with keys not smaller than K. Once the collection has been
partitioned, 1t then becomes necessary to apply this procedure

recursively to its own results: each of the two

sub-collections derived before 1s regarded as a full-fledged
collection in its own right and itself partitioned into
sub-collectiong. Continuing in this manner ylelds
gubwcollections with progressively fewer items, until finally no
spycollection contains more than one item and the sort is

complete.

Figure 10-6: Ilechanics of partition/exchange sorting -
Each section of this figure (partition numbers 1-10)
illustrates acts of partitioning as applied to an array
of 15 numbers and to various sub-arrays. The two rows
of elements depict the state of the array before and
after partitioning. Double-headed arrows indicate the
sequence of exchanges. Bold squares indicate the
reference keys. Numbers designated in stack operations
refer to the 15 array positions indicated at the top of

the figure.
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The act of partitioning a collection into sub-collections
involves setting up two pointers which migrate from the right and
left extremes inward. Whenevefﬂ%%eééight poiqter encounters aw
itemd belonging in the left sub-collection éﬁé&:iﬁw left pointer
encounters items belonging in the right sub-collection, such
items are exchanged. The meeting place of the two pointers ¢kﬁyqur5
Reasido® the é%gﬁLf position of the reference item.

The library subroutine ISORTQ implements a

e . . 2%
"partltlon/excnange sort glven,éﬁaee arguments:

1. SCHED - Schedule of items. SCHED must be an integer

array of dimension NUM containing pointers to each iten.

2. KEY - Array of keys, one for each item in the
collection. KEY must be an integer array of dimension

NUM.

3. GRAIN - Size of the smallest sub-collection to be

partitioned. GRAIN must be an integer.

L., STACK - Workspace for a stack, to be used temporarily by
ISORTQ. STACK must be an integer array of dimension

MSTK in the calling progran.
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5. MSTK - Dimension of array STACK. MSTK must be an

integer.
6. NUM - Number of items in the collection.
A rule of thumb for determining MSTK is:

MSTK = 7 + 3log N

<

Where N is the largest number of items contalned in any
collection to be sorted, that is, the largest possible value of
NULII.

Setting GRAIN to 2 insures a complete sort. However,
because the partition/exchange sort is relatively inefficient
with small sub-collections, it pays to partition sub-collectlons
no smaller than, say, 7 items and to use a straight insertion
sort to clean up the last stages. Knuth recommends this practice
in his discussion of the algorithm, where he also suggests
alternate ways selecting the reference item in order to obtain

certain advantages over using the leftmost item by rote.

-- Programming example 10-8: subroutine ISORTQ --



VENIIUDWN -

a7

subroutine ISDHTQ(SCHED,KEY,STACK,MSTK,GHAIN,NUM)
integer SCHED(1),KEY(1),STACK{1),MSTK,GRAIN,NUM,
K,LEFT,L,RIGHT,R, TOP

if (NUM.1t.GRAIN) return
TOP = O '
LEFT = 1
RIGHT = NLUM
do
Partition items LEFT through RIGHT relative to item LEFT

K = KEY(SCHED(LEFT)})
L = LEFT + 1
R = RIGHT
do
Decrement A to next item belonging left of item LEFT
do :
if (KEY(SCHED(R)).lt.K) exit
R =R -1
if (R.1lt.L) go to 47
repeat
Increment L to mext item belonging right of item LEFT
do
if (KEY(SCHED(L)).gt.K) exit
L =1L+ 1
if (R.le.L) go to 47
repeat -

Exchange items L #nd R
I = SCHED(L)
SCHED(L) = SCHED(R)
SCHED{(R} = I
repeat
Exchange items LEFT and R
1 = SCHED{LEFT)
SCHED{LEFT) = SCHED(R)
SCHED(R)} = I
Select next subcollection for partitioning
if (R-LEFT.ge.GRAIN) then
if (RIGHT-A.ge.GRAIN) then
call PUSH{R+1,TOP,STACK,M5TK)
call PUSH{RIGHT,TOP,STACK,MSTK)
end if
RIGHT = R -~ 1
else
if {RIGHT-A.ge.GRAIN) then
LEFT = R + 1
else
if (TOP.le.0) return
call POP(RIGHT,TOP,STACK)
call POP({LEFT,TOP,STACK)
end if
and if
repeat
end

Yo =24
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10.2.3 Deques

A deque generalizes a stack and a queue in that with a
deque, items of information may be both inserted at either end
and extracted from elther end. Such structures are implemented
as arrays using two pointers, wrapping around in the manner of
the circular queue. However, a deque requires utilities

analogous to PUSH and POP for each of these two pointers.

10.3 NOTES

1. Savants often speak loosely of the "depth" of recursion in
this context, rather than "remoteness"; however, when the number
of levels reaches up into the hundreds or thousands, the analogy

to physical "depth" ceases to have much meaning.
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