CHAPTER 9

SORTING

Among computer scilentists, a sort is a procedure which
arranges ihformation into ascending or descending order. Usually
this information occurs as a collection of items, themselves
composed of one or more elements. In such cases, arranging
~proceeds on the basis of specific elements called keys (note
1). When multiple keys are involved, a sort ranks them according

to significance,or precedence. The most significant key is

the primary key; the next most significant key is the
secondary key; next comes the tertiary key, and so on. Only
when items have identical primary keys does a sort consult the
secondary keys; only when items have both identical primary keys
and identical secondary keys does a sort consult the tertiary
keys. The number of keys in an item may be arbitrarily large.
The word file designates a collection of items kept as a
permanent store. Each item in a file is called a record. A
familiar example of sorting a file is the act of arranging a
directory. Here, the elements in each item of information might

include a last name, a first name, a street number, a street, a



city, a state, a zipcode, and a telephone number. One would
normally sort this information into alphabetic order using the
last name as the primary key and ﬁhe first name as the secondary
key. However, for some commerclal purposes it might be more
advantageous to sort the information geographically by zipcode,
street,vand street number.

The most obvious compositional application of sorting is to
organlize the results of a compositional process into an orderly
sequence. For instance, Charles Ames's Crystals for 16 strings
(1980, described 1982) was composed in two stages of production,
"composition" and "orchestratlion". The composing stage worked by
generating a string of consecutive notes, backing up, overlaying
another string of notes upon the first, and so on. It was
necessary to sort this information according to points of attack
before the orchestrating stage could assign these notes to
instruments.

Sorting can also serve more directly in compositional
decisions. Such applications generalize the notion of heuristic
decision-making first introduced in the discussion of cumulative
feedback (Heading 7.1) by employing analytic methods to evaluate
the 'virtue' (or 'odiousness') of each item in a collection; any
procedure used to derive numeric values reflecting 'virtue' or
'odlousness' may be classified as a heurism. By sorting items

relative to such heuristically derilived values, a composing
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program can derive a schedule, or agenda, in which the most
'virtuous' (or least 'odious') items occur first. The position
of each item in the schedule determines its priority. Two
applications of heuristic scheduling will be considered in this

Chapter:

1. Schedules can be used to organize sequences of tasks.
Por instance, a program might sort a collection of
options for a decision so that the decision will
conslder the more desirable options first; for another
instance, a program might similarly schedule a series of
decisions so that the most urgent decisions receive

first attention.

2. Schedules may also be used in place of random shuffling
to arrange elements within a statistical frame (Chapter
5). Here, a program might distribute a pool of
attributes (such as durations) among a collection of
items (such as notes) by sorting the items so as to
allot the most prominent attributes to.those items with

the most 'virtuous' qualities.
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9.1 SORTING BY INSERTION

Donald Knuth describes a wide varilety of algorithms for

sorting in Sorting and Searching (1973). An easily programmed

algorithm is the insertion sort (Knuth, pages 80-82). Figure

9-1 illustrates how an insertion sort steps through successive
items, "inserting" each item into its proper position in relation
to all previously sorted items. The algorithm terminates when it

has treated every item in the collection in this manner.

Figure 9-1: Sorting by insertion - Bold arrows
indicate transfers of data between locations in a
10-element array. Each column illustrates the act of
inserting one element of this array into 1ts proper
location relative to all of the preceding elements and
shifting all larger values up by one position.
Indications at the top of each column give the source

and destination for each insertion.

9.1.1 Implementation of Single-Keyed Sorts

It is inefficient to shift whole groups of items directly
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when each item contalns several elements. A better approach
involves first creating a schedule of pointers, each giving the
location of an item and next sorting the pointers. The library

subroutine ISORT implements this approach given three arguments:

1. SCHED - Schedule of items. SCHED must be an integer

array of dimension NUM containing pointers to each item.

2. KEY - Array of keys, one for each item in the
collection. KEY must be an integer array of dimension
NUM.

3. NUM - Number of items in the collection.

We assume that the information is organized in parallel arrays

all of dimension NUM, with one array for each element in an item;
however, the only array which concerns ISORT is KEY. The initial
order of pointers in SCHED effects the final schedule only when
two or more items have identical keys (Heading 9.2). The
variable L temporarily holds a pointer to the item currently

being inserted, while the variable K holds the item's key.

-- Programming example 9-1: subroutine ISORT --
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Subroutine ISORT may be converted to sort items into
decreasing order by reversing the inequality in line 9 (.ge.
becomes .le.). When this algorithm is used to sort items with
real keys, array KEY and the variable X must be redeclared as
type real. This book will adopt the nomenclature detalled in

Table 9-1 for library subroutines implementing single-key sorts:

Table 9-1: Nomenclature for sorting utilities.

9.1.2 TImplementation of Multi-Keyed Sorts

One implements multi-keyed sorts by "nesting" additional
tests when the more significant keys for two items are equal.
With the different combinations of ascending and descending tests
on real and integer keys, there are 16 varieties of two-keyed
sorts, 64 varieties of three-keyed sorts; each additional key
multiplies the number of varieties by four. Since no single
variety 1is particularly likely to appear more than once within
any given program, this book will adopt the practice of
integrating multi-keyed sorts directly into programs as they are
required. By way of 1illustration only, subroutine ISORT3

implements a sort on three integer keys, all ascending. Remember
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that the EXIT statements (lines 10, 13, 16, and 19) act
independently of the IF-THEN blocks: each EXIT causes control of
the subroutine to jump directly to the line immediately following

the next REPEAT statement (in these cases, line 25).

-- Programming example 9-2: subroutine ISORT3 --

9.1.3 Packed Keys

An equally effective approach to multi-keyed sorting -- when
1) all keys are integers and 2) all keys are to be sorted in the
same dlrectlon -- 1s to pack multiple keys>into a single
variable. In this variable, the primary key occuples the most
significant portion, the secondary key occupies the next most
significant portion, and so on. Packed keys enable a programmer
to employ standard single-key sorts such as ISORT or LSORT. The
trick to packing keys is to select a base, B, so that the more
significant keys will always take precedence. Suppose we have a
collection of M items, each characterized by N keys, and we would

like to pack these keys into single variables. Let
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k(m,1), k(m,2), ..., k(m,N)

represent the N keys in order of significance for the mth item.
Let B be 1 plus the maximum possible value of k(m,n) for any m
from 1 to M and any n from 1 to N. Then Equation 9-1 enables us

to construct a packed key K{(m):

N-1 N-2 1 0
. + k¥(m,N-1)*B + k(m,N)*B

=~
=
i
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=
—
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_—~
=
™o
o
+

(Equation 9-1)

Remember that raising any number to the zeroth power yields 1.
Choosing the base B as 1 plus the maximum of k(m,n) insures that
the leftmost nonzero term (right of the equality) swamps all
other terms in K(m). The contribution of k(ml,n) and k(m2,n) to
the packed keys K(ml) and K(m2) will only effect a comparison
between the mlst and m2nd items when k(ml,i)=k(m2,1i) for
i=1,...,n-1. |

In his Gradient for solo piano (1982, described 1983),
Charles Ames used sorts to assign durations to progressions of
chords. In this application, each chord acted as a "item" whose
constituent "elements" included the pitches in the chord in
addition to an analytically derived value measuring the chord's

level of "chromatic redundancy", that 1s, the number of chromatic
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degrees shared between a chord and its immediate predecessors.
This last element served as a "key" for a sort which enabled the
computer to distribute the longest durations to the least
redundant chords. It was constructed by tallying the number of
chromatic degrees shared between a chord and 1ts most recent
predecessors. These tallies were then packed into a single
variable in such a manner that the most immediate relationships
occupied the position of greaﬁest significance in the word.

As an illustration of Ames's procedure, suppose we have a
progression of 5-part chords and wish to reflect the level of
chromatic redundancy in each chord, taking into account its four
most immediate predecessors so that the more immediate
predecessors have greater significances. Assume we are currently
constructing a packed key for the mth chord in the progression.
Let k(m,n) represent the number of common chromatic degrees
shared by this chord and the (m-n)th chord. The maximum possible
value for any k(m,n) is 5, so we set the base B to 6. If the
most immediate predecessor has 3 common degrees, the next-most
immediate predecessor has 5 common degrees, the next-to-next-most
immediate predecessor has no common degrees, and the
next—Fo—next—to—next—most immediate predecessor has 2 common
degreés, then we have k(m,1)=3, k(m,2)=5, k(m,3)=0, and k(m,L4)=2.

Equation 9-1 would then yileld:
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3 2 1 0
K(m) = 3%*6 + 5% + 0%6 + L6 = 832

The library subroutines PACK and UNPACK provide conversion
between unpacked and packed keys. PACK compresses an array of
unpacked keys into a single variable. Its counterpart, UNPACK,
dismantles a packed key into components. Both subroutines

require four arguments:

1. VAR - packed key (destination for PACK; source for

UNPACK). VAR must be an integer.

2. ARRAY - array of unpacked keys (source for PACK;
destination for UNPACK). ARRAY must be an integer array

of dimension NSIG.

3. BASE - base as defined for Equation 9-1. BASE must be

an integer.

4, NSIG - Number of unpacked keys (levels of significance).

NSIG must be an integer.

-- Programming example $~3: subroutines PACK and UNPACK --
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9.2 RANDOM SCHEDULING

It may happen during a>sort that two or more items have
identical keys so that no firm criteria exist for sorting. In
such cases, the original order of items (modified in some
instances by quirks in the sorting algorithm) will determine
priorities. Onebmay insure that this order 1s unbiased by
shuffling the collection of items prilor to sorting.

Specifically, suppose one has a collection of NUM items, each
characterized by a value stored in an integer array KEY. One
might then derive a schedule of pointers SCHED by employing calls
to the library subroutine SHUFLE (Heading 5.2) and one of the

four sorting routines described under the preceding heading:
-- Programming example ?—4 --

Another method of introducing randomness into sorting is to
sort on fuzzy keys (note 2). Fuzzy keys are derived by scaling
a collection of determinate keys by random factors. Given a
collection of NUM items, each referenced by a table of pointers
SCHED and each characterized by a value stored in an integer
array KEY (also of dimension NUM), then one might assemble NUM

fuzzy keys in a real array FUZZ prior to invoking a sort:
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-- Programming example ¥-5 --

If multiple keys are involved, this strategy should only be

applied to the least significant key. Care should be taken

with the relative sizes of the determinate keys used to derive
the fuzzy keys. Consider the simplest example, that of
scheduling two items using a fuzzy sort. Suppose the determinate
key associated with item 1 has magnitude 2 while the determinate
:key assoclated with item 2 has magnitude 4. Two situations are

possible:

1. With likelihood 2/4, item 2's fuzzy key will fall
between 0 and 2. In this situation, the likelihood of

item 2's fuzzy key exceeding item 1's fuzzy key is 1/2.

2. With likelihood 2/4, item 2's fuzzy key will fall
between 2 and 4. In this situation, item 2's fuzzy key

will always exceed item 1's fuzzy key.

Therefore, the likelihood that item 2's fuzzy key will exceed

item 1's fuzzy key 1is:

(2/8)*(1/2) + 2/b = 3/4
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If we wish item 2's fuzzy key to be W times as likely to exceed
item 1's fuzzy key as not to exceed the latter, then the ratio R
between item 2's determinate key and item 1's determinate key

must obey equation 9-2:

R = W+ 1 ' (Equation 9-2)

The library subroutine FUZZY implements fuzzy scheduling
based on cumulative feedback. It resembles subroutine DECIDE
(Heading 7.3) in so far as the relative welght assigned to each

option depends on how far the option's cumulative statistic lags

behind the most-used option. FUZZY requires five arguments:

1. SCHED - Schedule of options. SCHED must be an integer
array of dimenslon NUM containing pointers to each

option.

2. CUM - Cumulative statistics reflecting how much each
option has previously been used. CUM must be a real

array of dimension NUM.

3. FUZZ - Temporary array for holding fuzzy keys. FUZZ

must be a real array of dimension NUM.
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4. OFFSET - Likelihood of selection associated with the

most-used option. OFFSET must be real.
5. NUM - Number of options. NUM must be an integer.

The criteria for choosing OFFSET are the same as with subroutine
DECIDE; when OFFSET 1s large relative to the lags, FUZZY
produces results equivalent to a random shuffle (Heading 5.2).

" Notice that the cumulative statistics residing in array CUM must
be updated externally to TFUZZY; FUZZY merely establishes

priorities for selection which may be overridden by other

concerns.

-- Programming example 9-6: subroutine FUZZY --

9.3 DEMONSTRATION 7: SORTING

Demonstration 7 illustrates how sorting might be used both
to schedule sequences of tasks and to arrange elements within
statistical frames. In addition, 1t addresses for the first time

in this book the very important compositional problem of
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coordinating multiple parts. It also addresses the equally
important methodological problem of generating a composition in

several stages of production.

9.3.1 Compositional Directives

The musical structure of Demonstration 7 has three levels:

clobal, median, and local. At the global level, the pilece

as a whole divides into eleven segments. At‘fhe median level,
each segment divides in turn into from three to eight three-part
chords. Owing to the monophonic nature of the clarinet, these
chords must be arpeggiated as single notes; this last division |

of chords into notes comprises the local level of structure.

Figure 9-2: Profile of Demonstration 7 - The graph of
articulations indicate ranges of uniform randomness
used to select between slurred, normal, and detached
notes. The three bold contours on the registral graphs
indicate central pitches around which the low, middle,

and high pitches of each chord are located.

Figure 9-2 graphically depicts the compositional data
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affecting the eleven segments. Each segment 1s characterized by
an average chordal duration, an evolving range of values
affecting the articulation of individual notes, by an octatonic
scale, and by evolving registers for each of the three parts in

each chord.

Figure 9-3: Welghtings of scale degrees in
Demonstration 7. Whole-note heads indicate heavily
welghted degreeé; half-note heads indicate moderately
weighted degrees; solid noteheads indicate lightly

welghted degrees.

Figure 9-U4: Sequence of scales in Demonstration 7 -
Vertical lines indicate common chromatic degrees. X's
indicate prime degrees. Relative welghts adhere to the

indications used in Figure 9-3.

Of special significance to the global structure are the
octatonic scéles, which consist bf alternating whole tones and
semitones built above the "prime degree" specified for a segment.
Figure 9-3 illustrates the relative welghts alloted te each
degree of the opening scale, which is bullt above the prime
degree F; notice that this scale moét heavily emphasizes F and

Bb while suppressing (though not eliminating) the two degrees
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standing opposite on the circle of fifths, F# and B. Similar
weightings hold for the scales used in other segments. This
scheme of weighting provides four effective 'shades' for each of
the three octatonic scalés recognized (by reason of degree
content alone) by conVentional musical theory. It also provides
two standards of 'distance' between scales. Thus scales built on
the prime degrees F and C, for example, may be regarded as
'close' because they emphasize similar regions of the circle of
‘fifths. Alternately, scales built on the prime degrees F and B
may be regarded as 'close' because these two scales share the
same collection of degrees. TFigure 9-4 depicts the progression
of scales 1in Demonstratioﬁ 7 while detailing common degrees

between consecutive scales.

Figure 9-5: Matrix of tendencles for Demonstration 7 -
Whole-note heads signify 'stable' pitches; solid
noteheads signify 'unstable' pitches with tendencles in

the directions indicated by the arrows.

Figure 9-6: Chordal progressions in segments 1-3 -
Noteheads reflect ﬁhe weightings indicated in Figure
9-4. Arrows following noteheads indicate tendencies
derived from the matrix illustrated in Figure 9-5; X's

preceding noteheads indicate fallures to resolve
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tendencies inherent in the previocus chord. The network
of bold, medium, and thin lines shows relationships by
common chromatic degrees in consecutive chords (bold
lines) and chords separated by one or two intervening

chords (medium and thin lines).

The distribution of scale degrees is flexible in that it
does no great harm to choose a statistically inferior degree for
a specific part in a given chord, so long as the program 1is
capable of compensating for this choice in later decisions. For
this reason,_statistical considerations assume the least
significance (in the technical sense) among the directives
governing what piltches occur 1in a chord and how one chord
progresses to the next. By contrast, the greatest significance
is allotted to the least flexible considerations, the stylistic
constraints. The following constraints affect every part in

every chord:

1. No two pitches in a chord may form a unison, minor
second, or major seventh. Neither may any two pitches
form one of the three preceding intervals expanded by

one or more octaves.

2. A part may leap by an octave, but otherwise may not leap
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by more than a major sixth.

3. No two parts may cross either explicitly within a chord

or virtually between two consecutive chords.

4. No two parts may move in parallel perfect consonances;
neither may entire chords move in parallel, regardless

their constituent intervals.

Figure 9-5 depicts the repertory of acceptable chords along with
nelodic 'tendencies' assoclated in each chordal type. These
tendencies reflect traditional (19th century) attitudes toward
the resolution of leading tones, dissonances, and unstable
consonances; 1n cases such as diminished and augmented triads
where a sonority admits to multiple tendencies, the author has
selected one resolution arbitrarily. The tendencies occupy a
level of significance below that of the constraints but above the
statistical considerations inherent in the scales; resolutions
are provided only when all of the constraints are satisfied. 1In
deciding which parts of a chord should be composed in what order,
the composing program gives first attention to parts with
downward tendencies and next attention to parts with upward
tendencies; only when all tendencies have been addressed are the

'stable' parts considered (note 3). Figure 9-6 depicts the
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progression of chords for segments 1-3. Notice that unresolved
tendencies are most prevalent in segment 3, where the upward
evolution in register conflicts with downward trends propigated
by successive downward tendencies.

A second item of concern at the median level of structure is
the duration occupied by a chord. With respect to chordal
durations, the composing program treats each segment of
Demonstration 7 as a statistical frame. Each pool of durations
‘adheres to John llyhill's generalization of the exponential
distribution (Heading 4.4.2.1) around the average chordal
duration indicated in Figure 9-2 and a proportion of 2.0 relating
the minimum and maximum durations. The program sorts these
durations so that the longest durations in a segment go to those
chords sharing the fewest chromatic degrees in common with their
immediate predecessors. In addition to depicting the chordal
progression for the first three segments of Demonstration 7,
Figure 9-6 illustrates how chordal durations depend upon common
chromatic degrees.

The directives governing how the program arpegglates chords
include a proscription against repeating-a pitch for two
consecutive notes (leaps by one or more octaves are quite legal)
and a rule requested by the clarinettist which forbids downward
slurs larger than an octave. Subject to these constraints, the

program selects pitches heuristically with cumulative feedback
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(Heading 7.1) from the current chord. This process acknowledges
the 'stable' piltches in a chord by assigning them
one-and-one-half times the weight assigned to pitches with
melodic tendencies. . At the beginning of each chord, the program
resets all cumulative statistics to zero so that the first three
notes in each arpeggio will present all three chordal pitches.
The duration of any note in an arpeggio 1s a sixteenth;
however, a note may be articulated in one of three modes:
2) slurred to successor, b) normal, c) detached from successor
by sixteenth rest. The strategy for selecting articulations
reflects Koenig's TENDENCY feature (Heading 8.2.3). To select an
articulation, the program generates a random value uniformly
within the evolving range depicted in Figure 9-2. Values between
0.0 and 1.0 produce slurred notes, values between 1.0 and 3.0
produce normal notes, and values between 3.0 and 4.0 produce
detached notes. Figure 9-7 transcribes the complete

compositional product for Demonstration 7.

Figure 9-7: Transcription of Demonstration 7.

-- Programming example §-7: program DEMO7 (5 pages) --
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1 program DEMO7
2 c
3 c Demonstration of sorting
4 c.
5 parameter (MSEG=11,MCHD=6§,MPAT=3,MSCL=8)
6 integer PAMSEG{MSEG),FNCSEG{MSEG),CHDSEG(MSEG) ,BURSEG(MSEG),
7 : REGPRT(MPRT), TNDPRT(MPRT,0:MCHD) ,DEGPAT (MPRT,0:MCHO) ,
8 H OCTPRAT{MPAT,0:MCHO) ,PCHPRT (MPRT ,0:MCHD) ,SCALE(MSCL),
=] : DEGSCL {MSCL )}, CRMCHD (MCHD)
10 real REGSEG(&,0:MSEG) ,ARTSEG(2,0:MSEG) ,EMPH{MSCL),
11 : WGTSCL(MSCL ), CUMSCL (MSCL ) , DURCHD (MCHD)
12 common ITIME,KTIME,ICHD,IPRT,CRMCHOD,DURCHD,
13 H AEGPRAT , TNDPRT ,DEGPAT ,OCTPRT,PCHPAT,
14 H DEGSCL. , WGTSCL , CUMSCL
15 data SCALE/0,2,3,5,6,8,9,11/
16 : EMPH/1.67,1.29,1.29,1.67,1.00,1.29,1.29,1.00/
17 data PAMSEG/ 6, 1, 10, S5, 2, 9, 7, 41, 12, 1, 8/,
18 : FNCSEG/ 1, 6, 4, 1, 7, 4, 3, 6, 7, 8, 3/,
19 : CHOSEG/ 7, &, 8, 7, 5, 5, &, 7, 7, 5, 3/,
20 : DURSEG/ 82, 62, 61, 41, 44, 55, 55, 55, 41, 41, 42/,
21 : REGSEG/40.,52., 40.,52., 48.,60., S56.,68., S56.,68., 56.,68.,
22 : 51.,68., 46.,68., 40.,68., 40.,60., 40.,52., 40.,52./
23 : ARTSEG/0.,3., 0.,3., 0.,4., 0.,2., 0.,3., 0.,4.,
24 : 1.,4., 2.,4., 3.,4., 1.,3., 0.,2., 0.,4./
25 C .
26 type 'Input Integer: °
27 read %,N
28 do (N times)
29 TRASH = RANF (]}
30 repeat
31 open (2,fFile='"DEMO7.DAT',status='NEW'")
32 Cc
33 c Stage 1: Compose progression of chords
34 C
35 C Initialization
36 do (ISCL=1,MSCL)
37 CuMscL(IscL) = O,
38 repeat
. 39 do (IPAT=1,MPRT)
40 TNDPRT(IPRT,0) = O
41 repeat
a2 PCHPART(1,0) = 48
43 PCHPRT (2,0} = 52
44 PCHPRT(3,D} = S8
45 ICHD = 1
46 do (ISEG=1,MSEG)
47 c Initialize scale
48 IPAM = PAMSEG(ISEG)
43 LSCL = FNCSEG{ISEG)
50 do (ISCL=1,MSCL)
51 IDEG = IPAM + SCALE(ISCL)
52 if (IDEG.gt.12} IDEG = IDEG - 12
53 DEGSCL (LSCL) = IDEG
54 WGTSCL(LSCL) = EMPH(ISCL)
55 cumscL({LscL) = cuMscL({LscL) + 1.0/EMPH(ISCL)
56 LSCL = LSCL + 1
57 if (LSCL.gt.MSCL) LSCL = LSCL - MSCL
58 repeat
59 c Compose chords
60 KCHD = CHOSEG{ISEG)
61 X = 0.
62 Y = 1.0/Float{KCHD)
63 do (KCHO times)
64 c Compute registers
65 ALOW = EVLIN(REGSEG{1,ISEG-1),REGSEG(1,ISEG),X)
66 RHGH = EVLIN{REGSEG(2,ISEG-1),REGSEG(2,ISEG),X) ;
67 REGPRT(1) = ifix(ALOW+0.5) T
68 REGPRT(2) = ifix((RLOW+RHGH)/2.0+0.5)
69 AEGPRT(3) = ifix(RHGH+0.5)
70 c Compose parts
71 call PARTS
72 ICHD = ICHD + 1
73 X =X +Y
74 repeat
75 do (ISCL=1,MSCL) .
76 CUMSCL({ISCL) = CUMSCL{ISCL) - 1.0/WGTSCL({ISCL)
77 repeat
78 repeat
79 Cc
80 c Stage IIl: Assign durations to each chord
81 c
a8z ICHD = 1
a3 do (ISEG=1,MSEG) "
84 KCHD = CHDSEG({ISEG)
85 AVG = Float(DURSEG(ISEG))/Float(KCHD)
86 call CHDRAHY(KCHO,AVG,2.0) >
a7 ICHD = ICHD + KCHD s
88 repeat
0 A ]
=T
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Stage III1: Arpeggiate chords

ITIME = O
KTIME = O
ENDTIM = 0.
ICHD = 1

do {ISEG=1,MSEG).
KCHD = CHOSEG({ISEG)

BEGTIM = ENDTIM

ENDTIM = ENDTIM + float(DURSEG(ISEG))
BEGALW = ARTSEG(1,ISEG-1)

ENDALW = ARTSEG(1,ISEG)

BEGAHG = ARTSEG(2,ISEG-1)

ENDAHG = ARTSEG(2,ISEG)

do (KCHD times)
BUR = DURCHO(ICHO) + REMAIN
IDUR = ifFix(DUR+0.5)
REMAIN = DUA - Float(IDUR)
KTIME = KTIME + IDUR
call ARPEGG(BEGTIM,ENDTIM,BEGALW,ENDALW,BEGAHG,ENDAHG)
ICHD = ICHD + 1
repeat
repeat
close (2)
stop
end

subroutine PARTS
Subroutine for composing a progression of three-part chords

parameter (MCHO=66,MPRT=3,MSCL=8)
integer SCDPRT(MPRT),REGPRT(MPRT),TNDPRT(MPRT,0:MCHD),
DEGPRT (MPRT ,0:MCHD),0CTPRT (MPRT,0:MCHO) ,
PCHPRT (MPAT ,0:MCHD )}, TNOTVL( 11, 11) ,DEGSCL {MSCL ),
DOCTSCL (MSCL ) ,PCHSCL (MSCL ), SCOSCL (MSCL ) ,RESSCL (MSCL) ,
CRMCHD (MCHD)
real WGTSCL (MSCL ) , CUMSCL (MSCL ) , DURCHD { MCHOD)
logical LEGAL
common ITIME,KTIME,ICHD, IPRT,CRAMCHD,DURCHD,
REGPRT , TNDPRT ,BEGPRT ,O0CTPAT ,PCHPRT,
DEGSCL. , WGTSCL. , CUMSCL
data SCOPRT/1,2,3/,8ChscL/4,2,3,4,5,6,7,8/
data TNDTVL/ O, O, ©O, ©O, O, O, O, 0O, 0O, O,
0,021,200,204,202,212,200,210, 0, O,
0,001,201,020,100,042,002, 0, 0, O,
0,201,010,204,200,012, ©, 0O, 0,012,
0,020,022,022,022, O, O, 0,022,022,
0,420,120,214, 0O, O, 0,210,210,212,
0,020,002, O, O, 0,002,002,001,002,
o,t02, ©0, 0O, O0,112,100,102,022, 102,
o, o, 0O, O0,200,042,200,022,102,002,
o, 0O, 0,021,020,021,022,122,020,120,
o, o, 0o, 0, ©, ©O, 0, O, 0O, O,

0Oo0O0OooOO0oOOQO0O0

N e e e w oW e ow e

Schedule parts, favoring most urgent tendencies
call SHUFLE(SCOPRT,MPRT)
call LSORT(SCOPRT,TNOPRT(1,ICHD-1),MPRT)
Select pitches for each part
do (IDXPRT=1,MPRT)
IPRT = SCOPRT(IDXPRT)
Determine registers; evaluate resulting pitches; schedule
pitches for current part )
call EVAL(SCDSCL,CUMSCL,RESSCL ,0CTSCL,PCHSCL)
Select first acceptable pitch in schedule
do (IDBXSCL=1,MSCL)
ISCL. = SCOSCL(IDOXSCL)
IPCH = PCHSCL{ISCL)
ITVL IPCH - PCHPRT(IPRT,ICHD-1)
if (LEGAL{IDXPRT,SCOPRT,IPCH,ITVL]}) exit
repeat
if (IDXSCL.gt.MSCL) stop 'No acceptable scale degrees.'
DEGPRT(IPRT,ICHD) = DEGSCL(ISCL])
OCTPRT(IPRT,ICHD) = OCTSCL({ISCL)
PCHPRT (IPRT,ICHD) = IPCH
cuMmscL(IscL) = cuMmscL(IsScCiL) + 1.0/WGTSCL(ISCL)
repeat
Determine tendencies
11 = MOD(PCHPRT(2,ICHB)-PCHPRT(1,ICHD), 12)
I2 = MOD(PCHPRT(3,ICHD)-PCHPRT(2,ICHD),12)
call UNPACK(TNDTVL(I2,I1),TNOPRT(1,ICHD),10,MPRT)
return
end

oo
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CEMD7.FOR Page 3
1 subroutine EVAL({SCDSCL ,CUMSCL ,RESSCL,0CTSCL ,PCHSCL)
2 C
3 c Ancillary routine for subroutine PARTS: This subroutime heuristically
) c evaluates each pitch evailable to the current chord and part. It then
5 o} assembles a schedule of scale degrees in array SCDSCL.
6 c
7 parameter (MCHD=66 ,MPRT=3,MSCL=8)
8 integer SCODPRT(MPAT),REGPRT(MPRT), TNDPRT(MPAT,0:MCHD),
9 H DEGPRT (MPAT ,0:MCHD) ,0CTPRT (MPAT ,0:MCHD),
10 : PCHPRT (MPRT,0:MCHD) , TNDTVL{11,11) ,DEGSCL (MSCL ),
1 H OCTSCL(MSCL ) ,PCHSCL (MSCL ), SCOSCL (MSCL) ,RESSCL{MSCLY) ,
12 H CRMCHD (MCHD)
13 real WGTSCL (MSCL ), CUMSCL (M5CL ) , DURCHD (MCHD)
14 common ITIME,KTIME,ICHO,IPAT,CAMCHD,DURCHO,
15 H REGPAT , TNDPRT ,0EGPRT ,0CTPRT ,PCHPRT,
16 : DEGSCL ,WGTSCL ,CUMSCL
17 c
18 c Evaluate pitches
19 call SHUFLE(SCDSCL,MSCL)
20 ITND = TNOPRT(IPRT,ICHD-1)
21 IREG = REGPRT(IPRT)
22 IPCH1 = PCHPAT(IPRT,ICHD-1)
23 do (IDXSCL=1,MSCL])
24 ISCL = ScoscL{InxXscL)
25 IDEG = DEGSCL({ISCL)
26 I0CT = (IREG-IDEG)/12 + 1
27 IPCH = I0CT%12 + IDEG - 1
28 ITVL = IPCH - IPCH1
29 if (1TND.eq.1) then
30 c Preceding pitch in current part has upward tendency
31 if {ITVL.eq.1 .or. ITVL.eq.2) then
32 IRES = 3
33 . else if (ITVL.eq.0) then
34 IRES = @
35 else if (ITVL.eg.-1 .or. ITVL.eqg.-2) then
36 IRES = 1
37 else ’
38 IRES = O
39 end if
a0 else if (ITND.eq.2) then
a4 c Preceding pitch in current part has downward tendency
a2 if (ITVl..eq.-1 .or. ITVL.eq.-2) then
43 IAES = 3
44 else if (ITVL.eq.1 .or. ITVL.eq.2) then
45 IRES = 2
a6 else if (ITVL.eq.0) then
47 IAES = 1
48 else
49 IARES = O
50 end if
51 else
se [ Preceding pitch in current part has no tendency
53 IRES = O
54 end if
55 RESSCL(ISCL) = IRES
56 OCTscL(IsScL) = I0CT
57 PCHSCL(ISCL) = IPCH
58 repeat
59 c g
60 Cc Sort pitches on basis of 1) decreasing suitability to resolve tendencies
61 C of current part (if any); @2) increasing cumulative statistics
62 do (1DXSCL=2,MSCL)
63 ISCL = SCDSCL(IDXSCL)
84 CUM = CUMSCL(ISCL)
65 IRES = RESSCL({ISCL)
66 I = IDXSCL - 1
67 do
68 if (I.1t.1) exit
68 LSCL = SCOSCL(I)
70 LRES = RESSCL{LSCL)
71 if (IBES.1t.LRES) exit
72 if (IRES.eq.L.RES) then
73 if (CUM.ge.CUMSCL(LSCL))} exit
74 end if
75 SCOSCL(I+1) = SCOSCL(I)
76 I=1I-1
77 repeat
78 SCOSCL{I+1) = ISCL
79 repeat
80 return
81 end N
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Function LEGAL (IOXPRT,SCOPRT,IPCH,ITVL)

Ancillary routine for subroutine PARTS: This subroutine tests
pitches to determine if they adhere to stylistic constraints

parameter (MCHD=66 ,MPRT=3,MSCL.=8)

integer SCDPHT(MPHT),HEGPHT(MFHT),TNDPHT(MPHT,D:MCHD),
DEGPRT (MPRT ,0:MCHD) , OCTPRT (MPAT ,0:MCHD ),
PCHPAT (MPRT,0:MCHD)}, TNDTVL (11,11) ,DEGSCL(MSCL) ,
DCTSCL(MSCL),PCHSCL(MSCL),SCDSCL(MSCL),HESSCL(MSCL),
CAMCHD (MCHD)

real WGTSCL(MSCL),CUMSCL(MSCL),DUHCHD(MCHD)

logical LEGAL

commor  ITIME,KTIME,ICHD,IPRT,CRMCHO,DURCHD,
REGPRT , TNDPRT ,DEGPRT ,0CTPRT ,PCHPAT,
DEGSCL ,WGTSCL , CUMSCL

LEGAL = .fFalse.
No leaps greater than a major sixth except octaves
LEAP = iabs(ITVL)
if (LEAP.gt.9 .and. LEAP.ne.12) return
No virtual part crossings
do {(LPRT=1,MPRAT) -
if (IPAT.gt.LPRT) then
if (IPCH.le.PCHPRT(LPAT,ICHD-1})} return
else if (IPRT.1t.LPRT) then
if (IPCH.ge.PCHPRT{LPRT,ICHD-1)) return
end if
repeat
Vertical constraints
K =0
do (LOXPRT=1,I0XPRT-1)
LPRT = SCDPRT{LDXPRT)
LPCH = PCHPRT(LPRT,ICHD)
LLPCH1 = PCHPRT(LPAT,ICHD-1)
No triple parallels or parallel perfect consonances
if (ITVL.ne.0) then
if (ITVL.eq.LPCH-LPCH1) then
K =K+ 1
ITYPE = MOD({IABS({IPCH-LPCH),12)
if {K.eg.2 .or., ITYPE.eq.5 .or. ITYPE.eq.7) return
end if
end if
No explicit part crossings
if ((IPRT.gt.LPAT.and.IPCH.le.LPCH)
H .or. {IPRT.1t.LPAT.and.IPCH.ge.LPCH)) return
No vertical identities or semitone relationships
IVERT = mod(iabs(LPCH-IPCH),12)}
if (IVERT.eq.D .or. IVEAT.eq.1 .or. IVERT.eq.11) return
repeat
LEGAL = .true.
return
end

subroutine CHORHY(KCHD,AVG,PROPOR)

Subroutine For evaluating 'chromatic redundancy' of each chord in
current segment and for assigning durations to each chord based
on this quality

parameter (MSEG=11,MCHD=66,MPRT=3,MSCL=8)

integer PAMSEG (MSEG )} ,FNCSEG (MSEG) , CHDSEG (MSEG) , DURSEG (MSEG) ,
REGPRT(MPRT), TNDPRT (MPRT,0:MCHD) ,DEGPRT (MPAT,0:MCHD]},
OCTPRT(MPRT,D:MCHD) ,PCHPRT (MPRT,0:MCHO) ,DEGSCL (MSCL),
CHDTMP(8),CRMCHD(MCHD)

real REGSEG(2,0:MSEG) ,WGTSCL (MSCL ), CUMSCL (MSCL ) , BURCHD{MCHD) ,

H DURTMP(8)

common ITIME,KTIME,ICHO,IPRT,CRMCHO,DURCHD,

REGPRT, TNDPRT ,DEGPAT,0CTPRT ,PCHPRT,

DEGSCL ,WGTSCL , CUMSCL

FYrN

Initielize schedule of chords and analyze chords for common
chromatic degrees
LCHD = ICHD
do (IDXCHD=1,KCHD)
LCHD1 = LECHD
IcAM = 0
do (3 times)
ICRM = ICAM % (MPRT+1)
LCHD1 = LCHD1 - 1
if (LCHD1.1t.1) exit
do (IPRAT=1,MPRT)
LDEG = DEGPRT(IPRAT,LCHD)
do (LPRT=1,MPRT)
if (LDEG.eq.DEGPRT(LPRT,LCHO1}]) then
ICAM = JICAM + 1
exit
end if

T p S e
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repeat
repeat

repeat

CAMCHD(LCHD) = ICRM

CHDTMP( IDXCHD]} = LCHD

LCHD = LCHD + 1
repeat
Sort schedule of chords so that least chromatically redundant chords
oceur first
call SHUFLE({CHDOTMP ,KCHD)
call ISORT(CHDTMP,CRMCHO,KCHD)
Assign longest durations to earliest chords in schedule
call FILLX{DURTMP,AVG,PROPOR,KCHD)
do (IDXCHO=1,KCHO)

DURCHO({CHDTMP { IOXCHD) ) = DURTMP (IDXCHD)
repeat
return
end

subroutine ARPEGG(BEGTIM,ENDTIM,BEGALW,ENDALW,BEGAHG,ENDAHG)
Subroutine for arpeggiating chords

parameter (MSEG=11,MCHO=66,MPRT=3,M5CL=8)

integer PHMSEG(MSEG) FNCSEG(MSEG) CHDSEG (MSEG) , DUHSEG(MSEG),
REGPRT(MPRT), TNDPRT (MPRT ,0:MCHDO) , DEGFHT(MPHT 0:MCHD),
OCTPRT(MPRT,0:MCHD), PCHPHT(MPHT 0 MCHD) , DEGSCL(MSCL),
CRMCHD(MCHD) SCDPHT(MPHT)

real REGSEG{2,0: MSEG) WGTSCL (MSCL ), CUMSCL (MSCL ) ,BURCHD{MCHD) ,
CUMPRT (MPRT)

common ITIME,KTIME,ICHO,IPRT,CRMCHDO,DURCHD,
REGPART, TNDPRT, DEGPHT DCTPHT PCHPRT,
DEGSCL ,WGTSCL, CUMSCL

data SCDPRT/1,2,3/

data HUGE/1GOODUDU o/

do (IPRT=1,3)
CUMPRT(IPRT)} = O.
repeat
do
if (ITIME.ge.KTIME) return
Select part
call SHUFLE(SCDPAT,MPRT)
do
CMIN = HUGE
IPCH1 = IPCH
do (IDXPAT=1,MPRT)
LPAT = SCOPRT({IDXPRT)
LPCH = PCHPRT{LPAT,ICHO)
€ = CUMPAT(LPRT)
if {C.1t.CMIN)} then
May meither repeat most recent pitch
if ( (LPCH.ne.IPCH1 .and. C.l1t.CMIN)
nor slur downward more than an octave
.and. (IART.gt.1 .or. LPCH-IPCH1.ge.-12} ) then

CMIN = C
IPRT = LPRT
IPCH = LPCH
end if
end if
repeat
if (IART.gt.1 .or. CMIN.1t.HUGE) exit
IART = &2
repeat

if (TNDPAT(IPRT,ICHD).eq.0) then
CUMPRT(IPRT) = CMIN + 1.0
else .
CUMPRT(IPRAT) = CMIN + 1.5
end if
Write rnote {Subroutine WNOTE increments ITIME appropriately)
call WNDTE(ITIME,1,0EGPRT(IPRT,ICHD),0CTPRT(IPRT,ICHD))
Select articulation
F = FACTOR{BEGTIM,ENDTIM,float(ITIME))
ALOW = EVLIN{BEGALW,ENDALW,F)
AHGH = EVLIN(BEGAHG,ENDAHG,F)
IART = ifix(UNIFRM{ALOW,AHGH))} + 1
if (IART.eq.4) then
Write rest
call WNDTE(ITIME,1,0,0)
else if (IART.gt.1) then
Write break
call WNOTE{ITIME,0,0,0) i
end if ) o
repeat
end
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Implementation

Program DENMO7 proper is responsible for realizing the global

structure of Demonstration 7. Also with DENMO7's domain of

respo

nsibility is the role of controlling program for subroutines

delegated with realizing the median and local structure. There

are t

hree such subroutines, corresponding to three stages of

production:

Stage I: Part Writing - Subroutine PARTS composes a
progression of chords. PARTS has two ancillary subroutines,

EVAL and LEGAL.

Stage II: Chordal Durations - Subroutine CHDRHY completes

the median structure by assigning a duration to each chord.

Stage III: Arpeggiation - Subroutine ARPEGG realizes the

local design by arpegglating each chord.

Though DEIMO7 consolidates these three’stages under a single main

program, in practice it is usually advantageous to implement

successive stages of production as independent programs linked

through files of intermediate products residing on a mass-storage

device. This enhancement has been dispensed with here for
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reagons of brevity: it would have required the programs
implementing each stage to include features for reading the
products of earlier stages from one or more 0ld files for further
processing along with additional features for writing the

products of the current stage out to a new file.

9.3.2.1 Main Program - Lines 17-24 of DEINO07 proper specify the
musical attributes characterizing each segment of Demonstration
7, as depicted in Figure 9-2. The program organizes these
attributes in six arrays identified by the mnemonic "root" SEG

and the following mnemonic prefixes:
1. PRM - Primary degree of an octatonic scale. This scale
obtains its sequence of whole and half steps from array
SCALE. Weights for each constituent degree reside in
array EMPH.
2. TFNC - Position of primary degree in scale

3. DUR - duration of segment in sixteenths.

4., CHD - number of chords in segment.
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5. REG - target registers (lowest and highest), expressed

as the lowest pitch in a one-octave ganut.
6. ART - articulation.

Notice in particular how modulations between octatonic scales
have been implemented. Rather than rotating CUMSCL as happened
for Demonstration 5 (Heading 7.6), DEMO?7 establishes two
‘auxiliary tables, DEGSCL and WGTSCL, giving the chromatic degree
and wéight associated with each element of CUMSCL (lines 48-58).
DEMO7 also implements the stratégy described under Heading 7.4.2
for biasing decisions toward the most highly weighted degrees at
the beginning of each segment (line 55 of the loop spanning lines

50-58) and for neutralizing this bias when the segment ends

(lines 75-77).

9.3.2.2 Part-Writing - Subroutine PARTS treats composing the
progression of chords as a problem in three-part,
note-against-note counterpoint. Remember that the compositional
directives affecting the part-writing most rigoroﬁsly emphasize
the stylistic constraints while allowing some flexibility toward

the resolution of tendencies and even greater flexibility toward
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statistical considerations. Subroutine PARTS accomodates these

directives using the following strategy:

1. PARTS schedules the three parts so as to select pitches

first for those parts whose melodic tendencles most

urgently demand resolution (lines 30-31).

2. For éach part, PARTS performs the following functlions:

a.

A call to subroutine EVAL (line 37 of PARTS) acts to
determine registers for each of the eight scale
degrees (lines 24-27 of EVAL). If the current part
has a melodic tendency, then EVAL also evaluates
each pitch's potential for resolving this tendency

(lines 29-54 of EVAL).

EVAL schedules the eight pitches, giving first
priority to pitches with high potential for
resolving tendencies and -- whenevef EVAL rates
potentials equally -- to pitches whose degrees lag
farthest behind as regards cumulative usage (lines

62-80 of EVAL). EVAL then returns to PARTS.

PARTS steps through the schedule of pitches (loop



9-26

from line 39-45 of PARTS), consulting the logical
function LEGAL (line 43 of PARTS) with each
‘iteration in order to select the first pitch which

meets every constraint.

3. Once it has selected pitches for all three parts, PARTS
then consults the matrix TNDTVL in order to discern a

new set of melodic tendencies (lines 52-54).
Information pertaining to individual parts within each chord
is organized in arrays identified by the mnemonic "root" PRT and

the following mnemonic prefixes:

1. REG - Registers (computed by main programn) .

2. TND - Melodic tendencles.

3. DEG - Degree of the chromatic scale.
4, OCT - Octave above 32'C.

5. PCH -

Pitch in semitones above 32'C.

The index IDXPRT determines the current part IPRT via the

LCOPRY
. (line M of subroutine PARTS).

scheduling array
Information pertaining to individual pitches under consideration
for a particular part in a chord is organized in five arrays

identified by the mnemonic "root" SCL and the following mnemonic
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prefixes:

1. DEG - Degree of the chromatic scale: DEGSCL(ISCL) holds
the chromatic degree assoclated with the ISCLth

octatonic scale step.
2. 0CT —.Octave above 32'C determined for current part.
3. PCH - Pitch in semitones above 32'C.
4, RES‘— Potential for resolution (determined by EVAL).

The index IDXSCL determines the current scale step ISCL via the
scheduling array SCDSCL (line 40 of subroutine PARTS).

Array TNDTVL (lines 17-27) stores the tendencies depicted in
Figure 9-5 in the form of three decimal digits indicating
tendencies for the low, middle, and high parts, respectively.

The interval between the low and middle pitches determines the
row of TNDTVL, while the interval between the middle and high
pitches determines the column. Null entries in TNDTVL correspond
to unacceptable chordal types. The digits 0, 1, and 2 have the

following meaning:

0. 'Stable' pitch; no urgency.
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1. Upward tendency (leading tone); low urgency.
2. Dovwnward tendency (dissonance or unstable consonance);
urgency.

Subroutine EVAL determines pitches by drawing chromatic
degrees from array DEGSCL and locating these degrees in the
Qctave determined by array element REGPRT(IPRT). Both degrees
'énd'registers are determined by the main program from the
compositional data depicted in Figure 9-2. If a tendency 1s in
force, then EVAL rates each pitch with an integer from 0 (no
potential for resolving this tendency) to 3 (high potential).
This rating is stored in array RESSCL (line 55 of EVAL). Notice
that EVAL considers lack of motion or stepwise motion in the
'wrong' direction pfeferable to leaps in the event that an
orthodox resolution is infeasible. Notice also that EVAL treats
upward and downward tendencles dissimilarly (note 4). When a
part has an upward tendency, EVAL prefers upward steps, unisons,
and then downward steps (lines 31-39). When the part has a
downward tendency, EVAL prefers downward steps as expected but
otherwise prefers upward steps to unisons (lines 42-50).

The ratings stored in array RESSCL for each of the eight
pitches along with the statistics accumulated in array CUMSCL

provide primary and secondary keys, respectively, which PARTS

high
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uses to derive a schedule of preferences. PARTS then steps
through this schedule, consulting the logical function LEGAL in
order to determine if a scheduled pitch adheres to all stylistic
constraints. The first pitch accepted by LEGAL concludes the
process of selection (note 5); it only remains for PARTS to
store this selection (lines 46-48) and to update the appropriate
element of CUMSCL (line 49) so that future decisions will be more

inclined to favor other scale degrees.

9.3.2.3 Chordal Rhythm - The strategy used by subroutine CHDRHY

for alloting durations to chords divides into three steps:

1. CHDRHY assigns each chord in the segment a measure of
chromatic redundancy based on the common chromatic
degrees shared with the chord's three immediate

predecessors.

2. CHDRHY schedules the chords in order of increasing

chromatic redundancy.

3. CHDRHY generates a'pool of durations in descending order

according to the procedures of the library subroutine
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FILLX (Heading 5.1.1) and distributes these durations to

chords as they appear in the schedule.

Information pertaining to individual chords is organized in three
arrays identified by the mnemonic "root" CHD and the following

mnemonic prefixes:

1. CHM - chromatic redundancy.

2. DUR - chordal duration.

The index IDXCHD determines the current chord LCHD via the
scheduling array CHDIDX.

The "measure of chromatic redundancy" is in fact a packed
key computed (in lines 20-41) according to the procedures
described under Heading 9.1.3. 1In this case the number of parts
is 3, so the base for Equation 9-1 is 4. In addition to
depicting common chromatic degrees, Figure 9-6 details
calculations of chromatic redundancy for each chord. The results
of each calculation are held in array CHMCHD. Calls to the
library subroutines SHUFLE and ISORT (lines 44-45) provide a
schedule of chords arranged solely on the basis of increasing
chromatic redundancy.

DEMO7 computes the average chordal duration for each segment

as the number of chords in the segment divided by the segment's
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duration (line 85 of DEMO7) and passes this quotient to CHDRHY.
It also passes a proportion between the maximum and minimum
chordal durations in a segment fixed consistently at 2.0. CHDRHY
in turn feeds these values (in line 42) to the library subroutine
FILLX (Heading 5.1.1) in order to generate a pool of durations
which are distributed exponentially within this limiting

proportion. Upon return from FILLX, these durations appear in

decreasing order in array DURIDX. The last portion of CHDRHY
(lines 47-50) effect the assignment of durations to specific

chords.

9.3.2.4 Arpeggiation - Subroutine ARPEGG consists of a
note-composing loop (lines 21-65) which iterates as many times as
necessary to fill out the duration of a chord. Each iteration
divides into two tasks: 1) selecting one of the three pérts in
the chord to provide a pitch for the note (lines 24-52) and

2) selecting an articulation (lines 54-64). Both tasks utilige
familiar strategies: selection of parts is heuristic with
cumulative feedback (Heading 7.1), while selection of
articulations uses the methods of Koenig's TENDENCY feature
(Heading 8.2.3). 1In selecting parts, it sometimes happened that

the constraint large downward slurs could not be accomodated by
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the heuristic strategy; in such éases, the program omitted this
constraint. The author then exercised his editorial perogative
by displacing such slurs so as to render the musical product more
congenial to the perfofmer while remaining true at least to the

statistical 'spirit' of the computer's decisions (note 6).

9.4 NOTES

1. The potential for confusion between "key" in this technical
sense versus "key" in the musical sense is unfortunate. However,
the best substitutes, "score" and "measure" have equally

confusing musical interpretations.

2. The notion of "fuzziness" derives from L. Zadeh, 1965, and

comes to the author by way of Roads, 1976.

3. For a long time, it was thought that the dissonance was
inherently unstable. Today, it seems mdre likely that such
instability arises due to the 'foreignness' of the dissonance
-within a consonant frame of reference; a dissonant.context is
equally capable of rendering consonances unstable. The act of

"regsolving" a dissonance through stepwise motion to a consonance
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might therefore be regarded a technique of binding digressions

melodically into the stylistic norm.

4, These preferences reflect the author's expedient solution in
the face of limited technical capability. A program
incorporating the much more sophisticated procedures described in
Chapter 14 would be capable of always providing orthodox

resolutions.

5. Under certain circumstances it might even happen that none

of the scheduled pitches satisfies all constraints. Indeed, the
author found after running this program with 20 different randomnm
seeds (obtained by specifying different values of N to the
request in lines 26-27 of DEMO7), only 6 runs terminated
successfully, for a fallure rate of 70%! We shall examine
methods of recovering from such failures and of insuring more

reliable performance in Chapter 1k4.

6. Editorial changes such as these are likewise obviated by the

procedures described in Chapter 14.
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