CHAPTER 6

CONDITIONAL SELECTION I: MARKOV CHAINS

Markov chains were formulated by the Russian mathematician

- Andrei Andreevich Markov (1856-1922) to model sequences of
incidents in which each incident affects its immediate successor.
Markov himself i1llustrated this consfruct by talleying the number
of times each palr of consecutive letters occurs in Aleksandr

Pushkin's FEugene Onegin in order to distill tendencies of

spelling in written Russian. The dependency of consecutive
letters in literary texts should be clear from such basic rules
of Englishvspelling as "always follow Q with U" and "I before E
except after C". Markov chains can also be used to model random
processes such as the changing fortunes of a gambler, the
inventory of a stocked commodity stocked under pressure from
continuing demand, and genetic fluctuations under random matings
and mutations.

Since each incident in a Markov chain corresponds to a

change in state between two consecutive points in time, we

commonly refer to the incidents themselves as transitions. It

is convenient to designate the state of the chain existing prior
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to a transition as the transition's source (equivalently, the

chain's past state) while designating the outcome of the

transition as the transition's destination (the chain's

current state). Consecutive transitions link up so that the

destination for one transition serves as the source for the next.
The range of a Markov chain is, obviously, the collection of
all possible states. This collection is always discrete (heading

4.1), though it may be either bounded or unbounded. Bounded

- .¢halns have a finite number of sgtates; for example, the Roman

alphabet has 26 letters. Unbounded chains can grow arbitrarily
large; for example, the number of bacteria in a culture can be
modeled as a Markov chain relating the current number to the
number existing one minute previously, and such numbers can

increase indefinitely.

6.1 EXAMPLE: TWO UNBOUNDED MARKOV CHAINS

Figures 6-1 and 6-2 illustrate two unbounded Markov chains
at work. These Figures illustrate both consecutive positions
in each chain and motions between positions. The range of

positions spans all the integers:
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where 0 indicates the first position in each chain. This range
is unbounded in both the positive and negative directions; even
though neither chain dips below 0 in Figures 6-1 and 6-2, both
are entirely capable of doing so. The essential behavior§ of
either chain is inherent in its motions: the likelihoods of
moving in elther direction are unaffected by the current position
(this condition does not hold for Markov chains in general;
;onsider Markov's own example), while the range of motions is

limited to the collection:

Figure 6-1: A first-order Markov chain with

zeroth-order motions.

Figure 6-2 A second-order Markov chain with

first-order motions.

The chain in Figure 6-1 is first-order with respect %o

positions because the probabilities assoclated with each poéition
(current state) vary with the most recent position (past state).

It 1s customary to display first-order transition probabilities
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in square arrays containing one row for each past state and one
column for each current state. Such arrays are called Markov
matricies (note 1). Since the range of positions in Figure 6-1
is unbounded, the Markov matrix for this chain would have an
infinite number of rows and columns. Table 6-la shows enough

elements to communicate the pattern.

Table 6-la: Position Probabilities in Figure 6-1.

Table 6-1b shows the probabilities associated with each motion in
Figure 6-1. With equal probabilities, the motion may be upward,
downward, or stationary; motions by one step are twice as likely
as motions by two steps. Because the probabilities associated
with each motlon are unaffected by preceding motions, the motions
in Figure 6-1 constitute a "zeroth-order" chain. Zeroth-order

Markov chaining 1s identical with weighted random selection.

Table 6-1b: Motion Probabilities in Figure 6-1.

The chain in Figure 6-2 is second-order with respect to

positions because the probabilities assoclated with each position
(current state) vary with the two most recent positions (past
state and past-past State). Organizing transition probabilities

for a second-order chain, ideally requires a cubic array with a
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third dimension to accomodate each different past-past state; on
paper, such cublc array may best be depicted using a separate
square matrix for each past-past state; the five matricies

provided in Table 6-2a illustrate representative cases.
Table 6-2a: Position Probabilites in Figure 6-2.

Motions in Figure 6-2 carry inertia: upward motions tend to
- propagate further upward motions, while downward motions tend to
propagate further downward motions. These motions constitute a
first-order chain because the probabilites assocliated with each
motion (current state) vary with the m&st recent motion (past
state). Table 6-2b presents the probabilities for transitions
between motions; notice that since the range of motions is
finite, the probablities can be all be explicitly organizéd into

a square matrix.

Table 6-2b  Motion Probabilites in Figure 6-2.

6.2 PROPERTIES OF FIRST-ORDER MARKOV CHAINS

Though chains of second order and higher would seem to
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provide increasingly generallzed formulations of Markov's
concept, it can be shown with a little conceptual juggling that
any chain of any order can be converted into a first-order
representation (note 2). Consequently, most of the mathematical
literature on Markov chains deals exclusively with first-order
properties.

Two properties which provide useful insights into the

behavior of first-order chains are the walting counts, which

reflect how long a chain might linger in an individual state

before moving on to the next, and the stationary probabilities,

which indicate the proportions in which the various states will
occur over the long term. In the discussion which follows, we
assume a speclal kind of chain which is irreducible in the

ALL eSS Cn

following sense: the chain must be capable offghy given state

from every other state, either directly or indirectly through two
or more transitions. This assumption insures that every state
available at the outset remains a viable point of habitation

throughout the 1life of the chain.

6.2.1 Waiting Counts

For a first-order Markov chain, we refer to the probability
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of a state effecting a transition to itself as the waiting

probability (or fixed-state probability) and to the number of

times a single state occurs consecutively as the waiting count.
Waiting counts follow a geometric distribution (heading 4.2.2.3)
whose parameter 1s the waiting probability. If we denote the
waiting probability for the ith state as P(i,1), then Equation

6-1 will give the expected walting count N(1).

N(i) = _P(i,i) + 1 = 1 (Equation 6-1)
1-P(i,1) 1-P(1,1)

As an example, consider the Markov chaln whose matrix of
transition probabilities is given by Table 6-1a. In this chailn,
P(i,1) takes the value 1/3 for every position i. The expected

waiting count for any position 1s therefore:

N = 1 = 1.5
1-0.333

Hotice that the observed average waiting counts for positions in
Figure 6-1 deviate around from this expected count: position 6
occurs five times for one unit per occurance, givingvan average
of 1.0, while position 8 occurs three (complete) times for one
unit, thfee times for two units, and once for three units, giving

an average of 1.7.
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6.2.2 Stationary Probabilites

The relative frequency with which a state occurs during a

Markov chain is governed by the stationary (or absolute)

probability associated with that state. Statlonary probabilities
result over the long term from the transition probabilities. We
may galn an appreclation of their nature by consldering the
behavior of many similar chains, all running simultaneously.
Suppose we have 300 HMarkov chains which share the matrix of
transition probabilities (and associated range) given in Table
6-3. Assume that all 300 chains execute their transitions in
synchronous and that at the outset, 100 chains reside in state A,

100 in state B, and 100 in state C.

Table 6-3: A three-state Markov matrix.

Consider the first synchronized transition. Of those 100
chains originally residing in state A, we would expect
approximately 50 to remain in state A, 40 to jump to state B, and
10 to jump to state C. Similarly, 40 original B's would become
A's, 50 would remain B's, and 10 would become C's; while 40
original C's would become A's, 40 would become B's, and 20 would
remain C's. The net result of the first transition would

therefore be to transform 100 A's, 100 B's, and 100 C's into
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approximately 130 A's, 130 B's, and 40 C's. For an arbitrary
transition, if N(A), N(B), and N(C) represent the number of
chains residing in states A, B, and C prior to the transition,
the numbers after the transition, N'(A), N'(B), and N'(C) may be

obtained by the following "system of equations":

N'(A) = 5/10%H(A) + 4/10%N(B) + 4/10%1(C)
W'(B) = L/10%N(A) + 5/10%N(B) + 4/10%H(C)
N'(C) = 1/10%N(A) + 1/10%N(B) + 2/10%N(C)

We must apply these egquations lteratively to estimate the
distribution of states after any number of transitions. Table
6-4 illustrates how the populations of states evolve given two
initial configurations: series no. 1 initially assumes 100 A's,
100 B's, and 100 C's, whille series no. 2 assumes that all initial
chains begln with A. Notice that the proportions. in both series
quickly settle down to 133/300 (44%) A's, 133/300 (44%) B's and
34/300 (12%) C's. These proportions reveal the stationary

probabilities inherent in Table 6-3:

Table 6-4: Evolutions of state-populations according

to the transition probabilities given in Table 6-3.



6.3 MARKOV CHAINS AND MUSIC

Musicdl analysts during the late 1940's and the 1950's saw
Markov matricles as a means of distilling the norms and
deviations of musical styles. Allen Irvine McHose (1947)
compiled extensive statistics on contrapuntal practices in Bach's
harmonizations of chorales and used these statistics to deduce
'correct' and 'incorrect' practices (note 3). Leonard lMeyer was

also an early proponent of this approach. In Emotion and

Meaning in Music (1956), Meyer cites the "Table of Usual Root

Progressions” from Walter Piston's Harmony (1941) As "nothing
more than a statement of the system of [conditlonall probability
which we know ag tonal harmony". Heyer's later "Meaning in music
and information theory" (1967) attempts to correlaté this
attitude dirsctly with concepts developed by Claude Shannon.
Shannon's best-known article, "The Mathematical fheory of
Sommunication"™ (1948) is often cited in connection with Markov

processes. This article provides the foundation of what 1s now

more commonly known as information theory. It describes a way

of measuring the "information content" of a "message", that 1s, a
sequence of discrete symbols such as a literary text. In
Shannon's theory, the least predictable messages have the
greatest information content; information decreases as

redundancy increases. He models messages as Markov chains, so
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that when the information content is high, transition
probabilities between symbols are close to uniform. Conversely,
when redundancy is high, transitions willl be strongly biased
toward certain patterns of succession.

Once this model has been established, Shannon proceeds to

T WRTRE

analyze 1) how transmitting such through a "noisy channel" (such
as a telegraph wire) results in loss of information, and 2) what
safeguards can be imposed to minimize this loss. Attempts to
,apply Shannon's theory to music generally put the listener's
faculties for percelving musical relatlonships into the role of
the "noisy channel". They then draw inferences concerning how

much redundancy may be removed from a musical "message" before

the message begins to lose its intelligibility.

6.3.1 Illiac Suite, Experiment 4

Experiment 4 of Hiller and Isaacson's Illiac Suite (1957;

described 1959) stands as the first direct use of Markov chains
to compose music. The Illiac selected consecutive intervals for
each instrument according to criteria of harmony (greatest weight
to most consonant intervals), proximity‘(greatest welght to

smallest intervals), and combinations of the two. Each
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instrument proceeds independently. The opening through section D
(indicated by rehearsal letters in the score) impose zeroth-order
welghts, while sectlons E through G are first-order. Sections H
through K apply Markov chains separately to strong and weak beats

of the meter.
6.3.2 TIannis Xenakis's "Markovian Stochastic IMusic"

In 1959, Iannis Xenakls wrote three works using lMarkov

chains to control successions of large-scale events: Analogique

A for string orchestra, Analogique B for sinusoidal sounds,

and Syrmos for 18 strings. Though all three works were
el Cruleiaa bl
manually composed, thetcould-eusé&y have been generated by
computer.
Xenakis's approach differs strongly from that used by
" Hiller, et al, in that Xenakis uses procedures gimilar to those

described under heading 6.1.3 to control the mass behavior of

many simultaneous chains. The states of his chains are

constructs which Xenakis calls "screens". Each screen
constitutes a configuration of one or more regions of bnusical
Space* (defined by coordinates of register, dynamics, and rate of

activity) in which some number of elementary "grains" of sound
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may occur (Xenakis, 1971, Chapters II-III).

6.3.3 Lejaren Hiller and Robert Baker: Computer Cantata

Hiller and Baker used Markov chains of zeroth through second

order in the five Strophes of their Computer Cantata (1963;
described 1964). These chains imposed transition probabilities
derived from the "Putnam's Camp" movement of Charles Ives's

Three Places in New England upon each of the following musical

attributes: pitches, durations, dynamics, notes versus rests,
and playing styles. Figure 6-3 compares the opening flute
passages from each Strophe; similar procedures were employed
independently to generate each of the rewmaining instrumental
parts. In describing their work, Hiller and Baker cilite the
strong influence of Claude Shannon (1948). They are most |
directly concerned wilth those aspects of Shannon's theory dealing
with "information content", which they attempt to treat as a
large-scale musical attribute analogous to tempo, key, thickness

of texture, and so on.

Figure 6-3: Comparison of opening flute passages from

Strophes I-V of the Computer Cantata - Copyright 1963
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Theodore Presser.

6.3.4 Curtis Roads's PROCESS/ING Programn

A highly original approach to automated composition
“described by Curtis Roads (1976), implements lMarkov chains of
extremely high order. Roads has developed a program called
PROCESS/ING and used it to create several compositions for tape
alone including Qfototype (1975; described 1975) and Plex
'(1975, revised 1982). The program is extremely complex and can
only be summarized here. It is based around 26 "finite
automata", each controlling one of 26 attributes characterizing a
cloud of sonic "grains". These attributes include begin time,
duration, center frequency, temporal density and registral
proximity of grains, and so on. The automata are connected by a
26x26 "interconnection matrix", so that, in general, the
attribute specified by an automaton during the n+lst cloud
depends both upon the past history of the automaton itself and
upon the attributes specified by the remaining automata during
the nth cloud. The process as a whole may therefore be régarded

as a Markov chain in which the number of possible states is given



by the number of ways in which attributes may be combined while
the order depends upon how much past history is taken into

account by the automata.

6.3.5 Other Applications

Applications of Markov processes have been described in
articles by Kevin Jones (1981) and Laurie Spiegel (1982). In
Jones, the range of states consists of a repertory of nusical
fragments; how these fragments succeed one another 1s controlled
indirectly by the composer through transition probabilities.
Spiegel's "harmonic algorithm" detalls a 'loglc' governing
progressions of chords derived from the major scale (I, IV, V,
ii, vi, 1ii).

Petr Kotik has developed an interactive editor for composing

ass sty o ‘
~with Markov chains. This utility akiawad Kotik to creatagand
modify; tables of transition probabilities, which he has used to

compose his Solos and Incidental Harmoniles (1983). A unique

feature of Kotik's approach was that he often specified
transition probabilities for several versions of the same

state. For example, he often describes one set of probabilities

for an ascending scale and another set of probabilities for a
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descending scale; the ascending scale would favor upward motion
while the descending scale favored downward motion. Each scale

degree therefore receives two entries in the table. Incorporated
into the transition probablilities are 'background' probabilities

of switching direction.

6.4 TIMPLEMENTATION

The basis of all algorithms for conditional decision-making
is feedback. In the case of first-order NMarkov processes, 1t is
necegsary to feed the most recent choice back into the current

R e
decision.. For example,; ome would implement the first-order chain

illustrated in Figure 6-1 by feeding back positions as in line 11

of program CHAINle
-- Programming example 6-1: program CHAINI

The library subroutine MARKOV simulates first-order Markov

transitions with bounded ranges. It requires five arguments:

1. RESULT - MARKOV selects a new state and returns an

assoclated value in this location (line 15). RESULT may
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be either integer or real.

2. VALUE - Array of values for each state. VALUE must be
an array of dimension NUM whose type is identical to

RESULT.

3. TRANS - Array of transition probabilities. TRANS must
be a real array of dimension NUM by NUM; Each row of

TRANS nmust sum to unity.

4, IDX - Index to most recent state. IDX must be an
integer. This argument provides the element of
feedback; MARKOV automatically updates IDX to the new
state with each call. (Notice that IDX serves as index

for the loop in linesb8—13).
5. NUM - Number of states. NUM must be an integer.

While the calling program will typically treat TRANS as a
two-dimensional array, MARKOV treats TRANS as one-dimensional.
It calculates the location in TRANS of the first element in the
IDXth row explicitly from IDX and NUM (line 4)»so that the

subroutine may handle arrays of different sizes.
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-- Programming example 6-2: subroutine MARKOV --

In general the order of a Markov chain gives the number of
items Which must be "fed back" into a decision. Implementing
Markov chains of arbitrary order requires a special data
structure called a queue (heading 10.2.1), and so is beyond the
scope of this chapter. The second-order chain depicted in Figure
6-2 is exceptional in that motions are independent of position.

. Program CHAINZ illustrates how this chain would be implemented.
It treats motions as a first-order chain (line 15) while feeding

back the positions as in CHAIN1 (line 16).

-- Programming example 6-3: program CHAIN2 --

6.5 DEMONSTRATION 4: MARKOV CHAINING

Demonstration 4 illustrates how Markov chains might be
employed to compose a piece of music. This piece may be regarded
as a chain of rhythmic units in the sense of "unit" used to
discuss Demonstrations 2 and 3. The structure of Demonstration 4
is simpier than in previous demonstrations because there are no

concerted phrases: each of the four attributes characterizing a
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unit -- duration, articulation, register, and degree -- proceeds

independently of the others.

6.5.1 Compositional Directives

Control over the musical behavior of Demonstration L is
_exerted through matricies of transition probabilities supplied
for each of the four musical attributes listed above. Specific
elements of these matricies may be acertained by consulting the
listing of program DEMO4: Array TRNAVG (lines 17-20) controls
average durations; array TRNART (lines 12-15) controls
articulations; array TRNREG (lines 34-40) controls registers;
finally, array TRNTVL (lines 22-32) controls intervals and --
indirectly -- chromatic degrees.

All long-term evolutions which occur in this piece arise
solely as consequences of tendencies inherent in these transition
matriclies. In particular, the rate at which these evolutions
proceed directly results from the walting probabilities
agsociated with the individual states: since waiting
probabilities for articulations are high, articulations evolve
very slowly; by contrast, the waiting probabilites associated

with degrees are consistently zero, so no two consecutlve notes
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repeat the same degree. Also pertinent to the long-term behavior
are the stationary probabilities depicted in Figure 6-4. Each
graph in Figure 6-U4 was derived from the corresponding transition

matrix using the procedures described under heading 6.2.2.

Figure 6-4: Stationary probabilities for Demonstration

I,

6.5.1.1 Duration - There are four average durations available to
any note. The walting probabilitles for all four values have
been calculated so that the chain lingers on esach value for
approximately two measures before moving on to a new value.

Table 6-5 illustrates how the average length over which a value
holds sway may be computed as the product of the average duration:
itself and the walting count. We should recognize that these
controls over how long an average duration holds sway are very
loose since both the walting counﬁ and the individual durations

are random (note 5).

Table 6-5: Expected lengths for sequences of notes

with fixed average durations in Demonstration 4.
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transition probabilities emphasize the smaller shifts in

register.

6.5.1.4 Chromatic Degrees - The progression of chromatic degrees
may be regarded as a first-order lMarkov chaln of clockwise
displacements around the chromatic circle illustrated in Figure
~1-2a. TFigure 6-5 details the relative weights associated with
each pair of consecutive displacements. Thoﬁgh intervals range
from 1 to 11 (unisons ars excluded),A"wrap—around"‘arithmetio

keeps the current degree always within the range from 1 to 12.

Figure 6-5: Stylistic matrix for Demonstration 4 -
Each entry depicts a pair of two rising chromatic
intervals with the middle degree fixed arbitrarily at
B. The number of semitones in an interval corresponds
to the extent of clockwise displacemement around the

chromatic circle illustrated in Figure 1-2a.

This approach resembles the INTERVAL feature of Gottfried
Michael Koenig's PROJECT2 program. Such matricies will be
frequently employed in subsequent Demonstrations and will be

designated in this book as stylistic matrices (note 4). The
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current matrix acts both to enforce absolute constraints and to
promote desirable tendencies, in this case to encourage a
consistently dissonant style. Any triad containing chromatic
identities receives a weight of zero, as do major triads, minor
triads, augmented triads, and triads with two perfect consonances
(for example, C-F-Bb) in any inversion or voicing. The remaining
triads receive relative weights from 1 to 6, depending on
dissonance. Thus, triads combining a perfect fifth with a minor
seventh, (for example, C-G-Bb) always recelve a relative weight
"of 1, regardless of inversion, while triads combining a tritone
with a major seventh (for example, C-F#-B) or combining two
semitones (for example, C-C#-D) always recelve a relative weight
of 6.

Figure 6-6 graphs average durations, articulations, and
registers in Demonstration 4. The complete product appears in

Figure 6-7.

Figure 6-6: Profile of Demonstration 4.

Figure 6-7: Transcription of Demonstration 4.
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1 program DEMO4

2 c

3 c Demonstration of Markov chaining

4 c

5 parameter (MREG=7,MTVL=11,MAVG=4,MART=4)

6 integer VALREG{MREG),VALTVL(MTVL)

7 real VALAVG(MAVG) ,VALART (MART)

8 real TRANAEG(MREG,MREG) , TANTVL{MTVL,MTVL ]},

Q H TANAVG{MAVG ,MAVG) , TRNART (MART ,MART)

10 logical SUCCES,REST

11 data VALART/.4,.17,.29,.5/

12 - data TRANART/.S1,.02,.02,.05,

13 : .02,.91,.05,.02,

14 : .05,.02,.91, .02,

15 H .02,.05,.02,.81/

16 data VALAVG/2.,3.,5.,9./

17 data TRNAVG/.875,.042,.042,.041,

18 - : .062,.813,.063, .062,

19 : .104,.104, .688,.104,
20 : .187,.188,.187,.438/
21 data VALTVL/1,2,3,4,5,8,7,8,9,10,11/
22 data TRANTVL/.13,.14,.08,.04,.13,.13,.04,.09,.11,.13,.00,
e3 H .19, .08, .04,.08,.00,.08,.04,.12,.15, .00, .22,
=2) H .17,.04, .09, .00,.00,.09,.04,.18,.00,.17, .22,
25 H .11,.40,.00,.00,.00,.10,.11,.00,.21,.16,.21,
26 H .33,.00,.00,.00,.00,.33,.00,.11,.06,.06,.11,
27 : .16, .06, .06, .06,.16,.00,.16,.06,.06,.06,. 16,
28 : .11,.06,.06,.11,.00,.33,.00,.00,.00,.00,.33,
29 : -.e1,.16,.21,.00,.44,.10,.00,.00,.00,.,10,.11,
30 : .e2,.17,.00,.48,.04,.09,.00,.00,.09,.04,.17,
31 : .22,.00,.15,.12,.04,.08,.00,.08,.04,.08,.19,
3z H .00,.13,.11,.09,.04,.13,.13,.04,.09,.11,.13/
33 data VALREG/40,45,49,54,58,62,67/

34 data TRNREG/.66,.17,.08,.05,.03,.01,.00,
35 : .41,.66,.11,.06,.03,.02,.01,
36 : .05,.10,.66,.10, .05, .03, .01,
37 H .03, .05,.09, .66,.098,.05,,03,
- 38 : .04,.03,.05,.10,.66,.10,,05,

39 s .01,.02,.03,.06,.11,.66,.11,
40 : .00,.01,.03,.05,.08,.17,.66/
41 data REMAIN/O./, REST/.true./
42 c
43 c Initialize
44 c
45 open (2,File='DEMO4.DAT',status="'NEW')
46 ITIME = O
47 MTIME = 8 % 60

48 IOXART = IRAND(MART)
49 IDXAVG = IRAND(MAVG)

50 IDXTVL = IRND{MTVL)
51 IDXREG = IRND(MREG)
s IDEG = IRND(12)
S3 c
54 c Main composing loop

S5 c

56 do .

57 : call MARKOV({ARTIC,VALART,TANART, IDXART , MART)

58 call MARKOV(AVGDUR,VALAVG, TANAVG, IDXAVG,MAVG)

58 if { PEST .or. .not.SUCCES(ARTIC) ) then

60 c Select duration of note

61 DUR = RANX({AVGDUR,8.0) + REMAIN

62 IDUR = max0(1,ifFix({DUR+0D.5)})

63 . REMAIN = DUR - Flost(IDUR)

64 c Select degree

65 call MARKOV(INTRVL,VALTVL,TRNTVL,IDXTVL ,MTVL)

66 IDEG = IDEG + INTRVL ’

67 if (I0EG.gt.12) IDEG = IDEG - 12

68 call MARKOV(IREG,VALREG, TANREG, IOXREG,MREG)

68 REST = .false.

70 else

71 c Select duration of rest’

72 DUR = RANX(AVGOUR/2.0,8.0) + REMAIN

73 IDUR = ifix{DUR)

74 REMAIN = DUR - float(IDUR)

75 REST = .true.

76 end if

77 [o] Test for end of composition

78 if (ITIME+IDUR.gt.MTIME) exit

79 Cc Write note or rest .

80 cell WNOTE(ITIME,IDUR,IDEG,IREG,REST)

81 repeat ' :

82 close (2) '

83 stop

84 end
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6.5.2 Implementation
~- Programming example 6-4: program DEMO4 --

Program DEMO4 implements the one-tiered structure described
above as a single composing loop which executes one iteration for
each rhythmic unit. All decision-making involving larkov
transitions 1is accomplished through calls to the library
subroutine MARKOV (lines 57, 58, 65, and 68).

B The symbols of program DENO4 adhere to four mnemonic 'roots'
corresponding to fhe four musical attributes controlled by the

progranm:

1. AVG - average duration of notes; the average duration

of rests 1s half as large.

2. ART - afticulation, expressed as the probability that a

rhythmic unit will serve as a rest.

3. REG - register, expressed as the central pitch in a

ganmut .

L, TVL - chromatic interval, expressed as an integer from 1

to 11.
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The number of states available to each attribute is given by a
parameter starting with the letter M. ZEach attribute has an
index, required by MARKOV; this index begins with IDX. Values
associated with each index reside in arrays beginning with VAL.
Arrays beginning with TRN hold transition probabilities for each

past and current state.

6.6 NOTES

1. The use of the word "matrix" in any context not specifiecally
including a rectangular array or lattice should be avoided as

jargon, except perhaps in science fiction novels.

2. Suppose we have a chain of order N wilith a range of M possible
‘states. Then we can construct a new chain by regarding each
possible sequence of N consecutive states in the old chain as a
single state of the new chain. This new chain will now have a
range of N¥M possible sequences. Similar reasoning holds even

when the range of possible states is infinite.

3. Though McHose does not mention Markov by name, McHose's

approach corresponds exactly to Markov's model.
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I, Matrices provide a means of implementing constraints which are
highly efficieht computationally. They have the advantage of
allowing a user to specify preferences on a case-by-case basis
and the disadvantage of forcing a user to do so. Not all
stylistic traits are as easily formalized into matrices as those
depicted in Figure 6-6; constraints against parallel

voice~-leading for example, are better expressed as rules.

5. The number of random mechanisms affecting a process is often

denoted as the degrees of freedom. The more degrees of

freedom, the more the individual states of the process deviate

from the norm.

6.7 RECOMMENDED READING

Cherry, Colin. On Human Communication, 3rd edition (Cambridge:

M.I.T. Press, 1978).

Jones, Kevin. "Composltional applications of stochastic

processes", Computer Music Journal, volume 5, number 2 (Summer

1981), p. 45.




6-27

Hiller, Lejaren and Robert Baker. "Computer Cantata: An

investigation of compositional procedure", Perspectives of New

Music, volume 3 (Fall-Winter 1964), p. 62



	1
	2
	3
	4



