CHAPTER 5

RANDOINl SELECTION II: STATISTICAL FRAUMES

The notion of a frame derives from cinematography, where
the word denotes a single exposure on a strip of film. In
broader usage, a "frame" connotes a 'Ifrozen' moment within an
ongoing process. For examples: 1in speech synthesis, a "frame"
might denote one of a sequence of momentary, static formants used
to simulate a-dipthong or glide; in artificial intelligence, a
"frame" might denote a momentary state of knowledge within an
ongoing process of learning.

In the present chapter, we presume that a composition is

conceived as a sequence of gtatigtical frames, each embracing a

number of musical items. Our goal is to select an attribute for
each item in such a manner that the collection of options
exploited by the frame as a whole conforms as closely as possible
to a prescribed distribution. Typical}y "items" might bg notes
or phrases. "Options" for notes might‘%g;a;érees of a scale,
articulations, or specific registers; the prescribed

distribution may work elther to maintain these options in uniform

balance or to emphasize certain options at the expense of others.

wdude

"Cptions" for phrases might Be transpositions of a scale from
which degrees are selected for the constituent notes, ﬁmﬂkheycﬁso
mgtede average values influencing local articulations or
registers.

The only requirement for a statistical frame is that a fixed
statistical distribution holds good for the entire frame.
Sometimes the statigstical frames will correspond to the musical
architecture;\ other times framing and architecture may proceed
independently. An example of dependence between framing and
:architecture would be when each phrase 1in a musical passage had
its own distributions of durations, degrees, and registers. An
example of independence between framing and architecture is
serial procedure, which imposes a discrete uniform distribution
of options. Here, the prohibition against repeating any item in
a series before the whole series has been stated means that‘the

opticns (eq. the fwelve davawache degrees)
number of qistinct Sremr=@opa MLy bwelkey must exactly match the
number of é;:;iﬁts in a frame. A phrase may embrace just a few
notes in a series, or it may overlap several series.

Indeed, frames governing different musical attributes need
not even proceed 1in synchronous. Continuing with the example of
serial procedure, a composer might juxtapose a series of twelve
chromatic degrees over a series of five articulations (not

including rests), a series of seven registers, and a series of

eleven durations. The resulting frames would only come into

5-3

alignment every 4620 notes!

The least bilased strategy for organizing a statistical frame

is analogous to the following mechanism:

1. Assemble a collection of identical balls, one ball for

each item in the frame.

2. Tor each option, calculate from the prescribed
distribution how many times the option should appear in
the frame, then mark a corresponding number of balls

with a code for this option.
3, Place all the balls in an urn and mix them around.

4. For each item in the frame, draw one ball blindly from
the urn. The code marked on the ball will indicate
which option has been selected for the current item. Do

not replace the ball in the urn.

It should be clear that options selected using this mechanism
will conform exactly to a prescribed distribution. This result
stands in strong contrast to the methods of direct random
selection described in the Chapter 4 (note 1). 1In later

chapters, we shall consider ways of rendering the process of

5-4

organization sensitive to stylistic criteria so that, for
example, it would assign the 'best' options to items possessing

one or more desirable qualities.

5.1 GENERATING DETERMINATE STATISTICAL POOLS
. N . brased,
e most direct way of implementing the above 'mechanlsm
starts by generating a pool of options which conforms to the
prescribed distribution. This pool §§§§%§59<ha shuffled
randomly (note 2) and then sampled using the procedures for

sampling a row described in Chapter 3 (heading 3.4.1).

5.1.1 Transformations of Uniform Pools

We now investigate methods of tailoring a population so that
it adheres both to a prescribed statistical distribution and to a
prescribed number of items. A simple method for generating a
statistical population is available if there exists some formula
which will transform uniform samples into samples conforming to

the desired distribution. In such cases, we need simply feed

5-5

equally spaced samples +recm the uniform range through this

transformation.

The library subroutine FILLX illustrates how this method
might be implemented to generate statistical pools conforming to
for John Myhill's generalization of the exponential distribution

(heading 4.2.3.1). FILLX requires four arguments:

1. POOL - Pool of samples. POOL must be a real array whose

dimension in the calling program is LENGTH.
2. AVG - Average magnitude of samples. AVG must be real.

3. PROPOR - Ratio of maximum to minimum sample. PROPOR

must be real.

4, LENGTH - Number of samples in pool. LENGTH must be an

integer.

Table 5-1 shows pools -of samples generated by subroutine FILLX
with PROPOR set consistently to 16. The parameter AVG is
calculated so as to illustrate filling an interval of time 100
units long (for example, 100 sixteenth notes) with a varible
number of rhythmic periods. Notice thalr the cumulative sum falls

far short of 100.0 when LENGTH is small; the effectiveness of

5-5a

by
R

pua
udnisd
aeadad
. A+ X =X
(x)Bote x gav- = (71)7004d"
{(HL9ON31 L =1) op
0°2/A + LH = X
{(HLON3)3EoT3/(LY~2H) = A
4T pu=
0'0 = iy
0°'L = 24
mm.mm
HO4OHd sk 2H = LY
((0°1-H0d0OHd) /0" L -) = HOJLOHd = 24
Uayl (0'000L "371'4H0d0Hd) ma as1a
udnaad
aeadad
L9AY = (71)700d
(HLON31 1L =T1) op
usys (L0"4L'371°4H0d0OHd) 4T asTa
*X11I4 03 guswunBue peg, doas
uayg ho.v.pa.momomm ‘dot *QTeTC9AV) 4T
(L)100d TE34
AIFoZMJ HOd0OHd ‘ 9AY JoomuxJJHm auTanoJgns

TNMITOUDONOOODO-NMT
Ll ol S AV RN AV AV AN A VAV |

CTNMOMTNONOODO
-

5-5Y

\\IM - V_
19

vE"L

€L L vL°¢ 8G'¢ 90°¢€ 8G €

GL ¥ LL'Y 9% "¢ £€C°9 Gl L
66711 8L°66 gL'8 6E°6 €6°0L 66°2L 809l Gc 9 91

90'¢€ gL'¥ ¥9°9
9€°6 0Z2°66 068 L9°LL €g°SL €2°02 0L°82 06 ¢lL 8
VL9 8E° L6 €EL°L S¥P'GL 99°9¢ €G°L¥ 00°¢sg 4
60°€ GG ¢6 6G°¢¢ 96°69 00°0s 4
Oo.w EL'LSB €L°L8 00°00L L

utu/Xep wng T00d DAY HLONAT

5-6

' - «‘yxcrwses w\'.\"l\. LE‘J?N(_,“TH
FILLX in this regard¥degeneratiw with larger values of PROPOR. LMCSc calues of
"\\"WQQ/\\JCS VE < IA\AV’Q

PROPOR 1 a large-sized population; even with as

many as 16 samples, the actual ratio falls far short of the

prescribed one.
-~ Programming example 5-1: subroutine FILLX --
Table 5-1: Statistical pools generated by subroutine

FILLX for PROPOR=16.0 - The parameter AVG is calculated

in each instance by dividing 100 by LENGTH.

5.1.2 Generating Pools from Stored Discrete Distributions

Suppose we desire to generate a population of N samples
according to a discrete distribution whose density for the ith
option is f(i). Then Equation 5-1 gives n(i), the number of
times option i will occur in this population.

n(i) = N #* f(1) (Equation 5-1)

Unfortunately, Equation 5-1 tends to produce results like:

5

and so on. A program must account for the fractional parts of
these numbers if it is to tallor the size of the population to

the size of the frame.

-7

The library subroutine FILL generates pools of samples from

stored discrete distributions. FILL requires six arguments:

1. POOL - FILL returns LENGTH samples beginning in this
location. POOL must be an array of dimension LENGTH;

it may be either integer or real.

2. VALUE - Repertory of options. VALUE must be an array

dimension NUM whose type is identical to that of POOL.

3. WEIGHT - Array of weights associated with each option

VALUE. WEIGHT must be a real array of dimension NUM.

4, SUM - Sum of weights stored in array WEIGHT. SUM must

be real.

5. LENGTH - Number of samples to be assembled in array

POOL. LENGTH must be an integer.

of

in

IS'—“’](\-

pus
udngad
aeadsu
A+ X = X
(N)3NVA = (71)7100d
aeaday
. "11I4 Jo4 s3yBrtem peg, dois (wnN'aB°'N) 47
I + N = N
M- X = X
3TX8 (M°87°X) 4T
(N)LHOI3IM = M
op
(H19N3 L ="1) op
bl = N
0'2/A = X
(HLON3)3BOT4/WAS = A

(L)LIH9I3aM (1L)3NTIVAC (1) 100d uUoTSuswIp
(WAN‘HLONIT WNS LHITI3IM 3INTIVA 1004) 114 @uT3nodgns

CTNMTNOND
L el ol B o SRR

SNMTNONOCOO
-

Ty

S

siysiivtivtjarjerjet|zijzajzi|agnjorjojoijelelele|ls|sls|slosislslstislisliclviv
Sl st ¥l ¥ 1 € 2 21 21 2 2 U 11l oo 6 6 6 6 8 8 L 9 9 9 § & S €& G § ¢ &

1 4

egjeiel2
£ € 2 2 2

2

1

Si

| []

- Gi

14
¢l

cl

5-8

6. NUM - Number of distinct options.

Figure 5-1 illustrates how FILL accomodates fractional parts.
: \S

The principle behind FILL e= similar to the principle behind the
library subroutine SELECT (heading 4.2.2.5): the relative weight

. . o R
assoclated with each option is treated as a "region"
range stretching from 0 to SUNM. In this case, LENGTH values
equally spaced between 0 and SUM are compared against these

relative welghts in order to determine how many 'coples' of each

opﬁion should be placed in the pool.
-- Programming example 5-2: subroutine FILL --
Figure 5-1: Mechanics of subroutine FILL - The
left-hand strip depicts relative weights for a

repertory of 15 options, while the numbers along the

top represent a pool of 83 samples.

5.2 RANDOM SHUFFLING

The library subroutine SHUFLE randomly shuffles an array,

SHUFLE requires two arguments:

-2«

pua
udniad
qesdadu
"L - X = X
ITX3 (L*=27°r) It
L - r=r
Xapur 3juswadaag
A = (A)3NvAa
(AM)3NWWA = (r)anava
(r)3anava = A
(M)3NIVA Y3a1m (r)3aniva sbBueyoaxgy
b+ (()INVHEX)XTIT =
(8ATSNTOUT) © puR | Uaamaaq) UOTIRIO0] WOPURJ a0a1ag

op
(r)aeotd = x
WNN =

(L)3ANTIVA woTsuswIp
(WNAN‘3NTIVYA)314NHS suTanodgns

CTNMSODOND
™Y T T T T

NY

R

STNMSNOUNOODO
-

5-2Y

4erqd 3o 2w
EIRNE]
o] 8]
10
| (]
[5]

10

8=2 7«7 6+5
o] o] [
[

S|
1]

_
g% 0000 O 0 O 0

I

2
3
4
5

10+6

1]

:
6 el

2
8
9

o ol [e] [] [[[[[[[§

52

5-9

1. VALUE - Array of samples to be shuffled. Value may be

either a real or an integer array.
2. NUM - Number of samples stored in array VALUE.

The algorithm for SHUFLE was developed by Moses and Oakford
(1963) and independently by Durstenfield (1964); it works by
stepping backwards through the array, exchanging elements at
random either with themselves &% or with earlier elements (note
3). Figure 5-2 illustrates how SHUFLE might randomly permute an

array containing the integers from 1 to 10.
-- Programming example 5-3: subroutine SHUFLE --

Figure 5-2: Mechanics of Random Shuffling - The first
9 columns show the state of VALUE during consecutive
iterations, while the two numbers above each column
indicate which two locations SHUFLE has decided to
exchange. The last column shows the completely

shuffled array.

Gottfried Michael Koenig's PROJECT! program (Koenig, 1970a)
and PROJECT2 program (Koenig, 1970b) both include a feature

called SERIES which samples a statistical pool, shuffling the

1 e
pool at the end of each osssd@ms . The similarly named subroutine
given here performs a similar task. This subroutine requires

four arguments:

1. RESULT - Each call to SERIES transfers one option from
array VALUE into this location (line 9). RESULT may be

elther a real number or an integer.

2. VALUE - Pool of samples. VALUE must be an array of

dimension NUM whose type is 1ldentical to that of RESULT.

3. IDX - Index to most recently consulted position in array
VALUE. This index insures that no entry in VALUE
repeats until the entire pool has been exhausted.

SERIES updates IDX with each call and shuffles VALUE
whenever IDX reaches NUM (lines 3-8). IDX must be an

integer.

4, NUM - Number of samples in array VALUE. NUM must be an

integer.

-- Programming example 5-4: subroutine SERIES --

””\CL_

o

’

pua
udnaad
(XQI)3NnvA = 1NsS3y
4T pua
L + XOI = x4l
asia
L = XOoI
(WAN‘3NTIYA)3T14NHS TTED
uays (WNN-=2B+xa1) 4t
(1)3INIVA YoTsuawTp
(WANXAI‘3NTIVA‘ LINS3Y)S3IHIS auTIN0UgnS

-—
-

s MITNONDOO
-

-5 %3

5-11

5.3 DETERMINING THE SIZE OF FRAMES

For the approach described in this chapter to be effective,
the number of items in a frame should be large enough to express
the characteristics of the prescribed distribution. For example,
a Bernoulli distribution (heading 4.2.2.1) with one chance in
five of success makes no sense at all for frames containing less

than five items. ZFEquation 5-2 provides a rule for determining

" the minimum effective number of items in a frame, where T

represents the density function for a discrete distribution of
options. In order for the ith option to be represented in the
frame, the number of items must be at least as large as the

number N{(i):

N(i) = 1 (Equation 5-2)

For continuous statistical distributions, in order for the region
bounded by x1 and x2 to be represented in a frame by at least one
value, the number of elements in the frame must be at least as
large as the number N(x1,x2) given in Equation 5-3, where the
function f is the continuous density function.

N(x1,x2) = (Equation 5-3)

1
fl(x1+x2)/2] * (x2-x1)

5-12

5.4 APPLICATIONS

5.4.1 Herbert Brun: Sonoriferous Loops

Figure 5-3: Herbert Brun, Sonoriferous Loops,

measures 0-9 - Copyright 1964 Herbert Brun.

One of the earliest compositions employing random shuffles

to organize statistical frames is Herbert Brun's Sonoriferous

Loops (1964; described in Hiller, 1970). This work consists of
nine sections alternating an ensemble of five instruments with
digitally syntheslzed interludes of three contrapuntal parts.
Each section is distinguished by a distinct selection of
"play/rest probabilities"™ governing the relative activity in each

part, instrumental or synthetic. Pitches in Sonoriferous Loops

conform to twelve-tone rows (and,by implication, are organized
into frames of twelve notes) which Brun's program randomly
shuffle§ at the beginning of each cycle. This process of
selection provides degrees for all parts simultaneously, so that
the composite texture obeys a uniform distribution of degrees;

however, Brun further constrains the process so that each part

SONORIFEROUS LOOPS

Herbert Brin
Opus 32 - 1964

o 1 2 3 4

s~
mi)
L)
o
™
i - o
Tt

Fiute fitey i =) = #(- —
T ffep ——f - |—f° S, —
0 W h'\h T "I:oop 1 N
. = [H % 3
Trumpet in Bb 75‘,;@..3 = S = a.a;‘&,‘l;;!?:-_-;‘%ﬁ\ o
sffz>p . S r—f P ‘n<”? "
_ — 1 ~he -
Double Bass i," ¢ = & %'"’{l', "i = - L‘]f ‘i%ﬂ:ﬁl‘t l
f AN
S S
[— is
Xytophone (Fifps é) r— I s
SE
JRMSTRR——]
—) s
sz; —~— | — s e » — Y
Marimba (= =% 1 Z =1 1= e
L)] - I f
T=mf S '
. ot
C"‘"“[.w‘fﬁﬁ X - - - '!huxn but:‘;‘k .
[2Y b [
S wood block k4
% the—x Iy
e TiveaLes[fIg® S r} o -
a o
vass orums[f Ly Pa()_ /
eonesﬂ‘m‘.' +* 'P
5 6 7 8 9
__ e rhey - ‘
P SN = < S e I S
T 1I ¥
= ==s=g W= = el =i
L —-— e
— = P o T MV
Tot 4 h:‘ 1 1 ’\l.‘ hﬁ. ﬁ. "T‘B——-‘ ’E Sy ﬂf 19{2
L e e e e e e e e
o 5 = PP af T F =1 1 — ;
. [T) S ———p
G e . N <.
B [Ff——= = = e
—3 — 3 —J L] "u
Nid - f »
> —
ot (I =i b ﬁ F—
(& s s
Fa #a £ Iy [} p
Mar. {[52 = t S e SRR ek
’Z P }’ T
oym xnx etloks normal "o &x‘x -
7"’355: . "'}’H I~
RIR3 ~ ”’,l;v
6 sl \ \
é timb }lg® '}x ? .Ii)
m'_/' L4
vefg® P } 'l -
bl oo A
ma D73

VPBIRITTTR

5-13

internally obeys a similar distribution: according to Brun, if a
selected degree does not conform to the internal distribution of
a part, then the program replaces this unacceptable degree in the
row -- rendering 1t avallable for use by another part -- and

selects another option.

" 5.4,2 Gottfried Michael Koenlg: Uebung fur Klavier.

The notion which we designate in this book as "statistical
frames" provides much of the underlying conceptual basis for
Gottfried iMichael Koenig's PROJECT1 and PROJECT2 programs. Of
Koenig's computer-composed scores, his most elaborate is the

Uebung fur Klavier composed using PROJECT2. The score to this

work consists of twelve "structures". Each structure appears in
threé "variants" generated from more-or-less the same directives
to PROJECT2. Koenig Sﬁﬁﬁéﬁﬁﬁﬁéé the random aspects of his
composing process by allowing the performer to choose between
variants; the fact that all three variants otherwise adhere
rigorously to the Koenig's directives is reflected in Koenig's
instructions that at least one variant of each structure nust

be playéd, and that all twelve structures must occur in a

prescribed order.

%;’\%h\

‘—.

L7
+

hboe

AKKORDE

v Hs

ANi V2

§e'

mf'

==

) 7
!

b

R |

b

LA S

b

S

>

3

be
14

m‘.

A\ 74

——

o

«Z,
v |
o j

W

ﬁ | !

il N

" .

[i

il m,

- ~ -

IR I Y
- il ! i o
i *J | F . r
i i +

]
jJ (i . Lo i
Pl B ER58
2918 uww &] : -
y

F

b :ﬁf v | H

R
3
L &
ol
[FUNN . J—
rm
i
Xy
<

IR TR R

B
22
B
E2
[4)
==
D] ”;
mf

TgE
®
®
®

| ®

5-14

Figure 5-4: Gottfried Michael Koenig, Uebung fur
Klavier (1970), structure 8, variant 1 - Copyright

1970 Gottfried Michael Koenig.

To illustrate the workings of PROJECT2, we will examine

structure 8 of the Uebung fur Klavier. Figure 5-4 reproduces

variant 1 of this structure. It incorporates two sets of
material, the eight "groups of chords" and the five "groups of
tones". These two sets of material result from two independent
ASets of directives to PROJECT2. Koenig provides the following
synopsis of structure 8 in his instructions to the performer,
which allow elements of performer discretion much like those used

to control the performance as a whole:

A transition: chords and tones alternate. There are
also Several groups of both chords and tones in every
variant. Not all the groups of chords or tones have to
be played, but those selected must be in the given
order. Groups of tones must always be separated by
chords, groups of chords can join on to one another
(without jumping over groups of chords). A second
group of chords then joins on rhythmically>Where
indicated by the arrow. Such arrows, when present,

have no significance if groups of chords alternate with

5-15

groups of tones. What must be played are: at least
three groups of tones in the first variant The
number of groups of chords is left to the player, but

he should begin with a group of chords.

Table 5-2: Chordal table for structure 8 of Koenig's

Uebung fur Klavier.

Table 5-3: Intervallic table for structure 8 of

Koeing's Uebung fur Klavier.

PROJECT2 incorporates three "principles" for selecting
chromatic degrees which Koenig names ROW, CHORD, and INTERVAL.
All three "principles" affect only degrees -- register is treated
as an independent parameter. ROW is monophonic; 1t implements
the basic serial procedures described in Chapter 3. Koenig does
not employ ROW in Structure 8. CHORD is homophonic. Given a
table pf chords, each chord containing from two to twelve
degrees, CHORD employs a selection procedure such as ALEA
(heading 4.2..2) or SERIES to select one chord from this table and
to apply a (register-free) transposition. For the "groups of
chords" in structure 8, Koenig supplies CHORD with the list of

chords detailed in Table 5-2 and directs ALEA to choose chords

JN J/,w W~Jd\/

J qad v # Ll
o # od # 9l
ad A4 # 4 Gl
O ad Y # 7L
D ag q #D el
v #d4 g #0 Gl
0 ad v Ll
D qd #0 oL
Y #a g v -6
ad Y #4 8
2 g # L
#d q #0 9
qd Y : S
#4 L ¥
J qad €
Y #4 é
q #D L

SEER T xXopu]l

€5 N4
safk ou ou ou ou ou ou ou ou saf so4 LI
ou s94 sok ou ou s8h s9h so4 ou sadh salk Lu
ou salk ou ou ou ou saf ou s94 ou ou 9N
ou saf ou ou ou ou ou sok ou sSo4 ou om
ou ou ou ou ou ou s3k ou sS9A s84k ou cd
ou ou ou saf ou sad ou ou ou soad ou Ll
ou s9A s8f ou so4 ou’ ou ou ou ou ou ¥d
ou saf ou sadk ou soa4 ou ou ou ou ou R
ou ou sak ou saf ou ou ou ou soa4 ou cu
sl sof ou s9AL Sso4 ou ou S94 s9h s34k ou ZH
sok so4f ou ou ou ou ou ou ou ou so4k FA
LN Lu 9N gu Gd LL ¥d EN gu 4 cu TeAJa3U]Y
. 1uU809Yy

TRAIS]UT JUSIIN)

}SOR

5-16

ahd to select transpositions. INTERVAL is monophonic, like ROW.
INTERVAL implements a strategy which we will come to know in
Chapter 6 as a "Markov chain". Each call to INTERVAL returns one
of the twelve chromatic intervals, this interval is then applied
to the 'most recent degree' in order to determine the 'current
degree'. This 'current degree' then becomes the 'most recent
degree' for the next call to INTERVAL, perpetuating the chain.
INTERVAL exploits this process to incorporate sensitivity to the
local intervallic context: 1n order to select the current
interval, INTERVAL consults a logical table detailing which of
the twelve chromatic intervals are acceptable as the 'current
interval' given the 'most recent interval' (the 'current
interval' then becomes the 'most recent interval' next time
around) and employs ALEA to select from these acceptable
intervals. For the "groups of tones" in structure 8, Koenig
supplies INTERVAL with the logical table detalled in Table 5-3.
Among the remaining parameters selected by PROJECTZ2 are
register, "entry delay" (Koenig's term for periods between
consecutive attacks), duration, and dynamics. For each of these
parameters, the user of PROJECTZ2 must either specify a constant
or instead provide a "supply" of options and specify the
'selection feature as SEQUENCE (heading 3.4.1)} ALEA, SERIES, or
one of geveral other features yet to be described in this book.

Registers are expressed as lower and upper limits within which

5-17

PROJECT2 places a degree at random; in Structure 8 Koenig holds
these limits constant. To select "entry delays", Koenlg uses
ALEA. Durations for the groups of chords are determined
similarly, éubject to Koenig's proviso that no chord should
overlap its successor (if a duration provided by ALEA does not
meet this proviso, PROJECT2 discards it and initiates a new
choice); durations of tones are idehtical with entry delays. To
select chordal dynamics, Koenig employs a feature called GROUP

~ which repeats each dynamic a variable number of times before
choosing a new one; in this instance, GROUP employs SERIES both
to determine the number of repetitions and To choose a new

dynamic when all repetitions have been exhausted.

5.5 DEMONSTRATION 3: STATISTICAL FRAMES
Figure 5-5: Compositional data for Demonstration 3.

Demonstration 3 illustrates an automated compositional
process in which all decisions are effected by sampling randomly
shuffled pools without replacement. Like Demonstratioh 2,
compositional control over Demonstration 3 is limited to

prescribing distributions sfvuptrlong affecting attributes of

5- l'l “

Attributes of Phrases

Phrase lengths

I —

20 30 40

Average durations

e

Articulations

20 27 37 50

Center pitches

abs cia Fia cs) 8hs [1%3

Attributes of Notes

Durations

Offsets from center pitches

sminmiEA [1M

-4 -3 -2 -1 [1 2 3 4

By 5-5

L SalO e

5-18

phrases and notes. However, the techniques described earlier in
this chapter insure much tighter adherence to these distributions

than had been possible using direct random selection.

5.5.1 Compositional Directives

Pigure 5-5 depicts the distributions of musical attributes
affecting phrases and notes in Demonstration 3. The most
prominent stylistic trait distinguishing Demonstration 3 from its
predecessor is that where Demonstration 2 exploited the twelve
chromatic degrees with equal probability, Demonstration 3
exploits gamuts of only nine adjacent semitones within a given
phrase and weights pitches at the center of a gamut three times
as strongly as 1t weights the outer pitches. Figure 5-6 graphs
the musical attributes selected for phrases; a transcription of

the musical product appears in Figure 5-7.
Figure 5-6: Profile of Demonstration 3.

Figure 5-7: Transcription of Demonstration 3.

AVERAGE
DURATION

ARTICULATION

REGISTER

maosure

AVERAGE
DURATION

ARTICULATION

REGISTER

measure

AVERAGE
DURATION

ARTICULATION

REGISTER

measure

i' I T T 1 1] 1 T T T T] J i I L 1 T }
3l I 1 | S — T 1 1 — 1 I o 1 T T ™Y1 I]
L 1 1 ym 3 L i . o'y T y & d . 1 T 1 1 1 } W 1 —
0.80
037
027 1
0.20
”E l ;
[4]
] | | I LI ! (. jro | | | | LT B b |20 |
gl 4 T H I b 1 T 1 T T .I T T 1 k1 T b4 1 I]
3} 3 ! 1 1 L4 e s 1 1 I I H b 1 § O ’e T T "
!L[b1 i i 1 i 1 i i s O 1 1 L 1 1 1 dnad J 1 i J
0.80
0.37 |
.27 l
0.20
[: = .
= = !
I
e i==—=
| It | les 1 ! ool fzo | 1 |] [lss | | i f20]
3
b o S S e " s—— s { Mo Bevean " — Tttt —
3 1 1 i I ¥ e I 1 I 1 1 I —1 1 1 }
0.80
0.57
0.27 1
0.20
eea I !
- I | iD=
L e e 2 T A A - R S N A L N A e L
. ~
Tig 5
3] { 1 } | { 1

S

[

's}

-1%

-~
P~

—

.

Charles AMES

-

1

bliehe £w ehel

T

.—H—O—

E

e o s L3 e

-

& ¥ ~—r

Demonstration 3

h‘

wF NG =

1

=
-

|

-

| = kS
i

80
-

%

=

1

-

L)

o (== =

> 4
|
fi v

nlb

Clarinet
STRICTLY J

:'2b

Vi

m A Thet

P

»—

| papy
«N®

1

= 3 L e

1

S

&t

Sl |

~ el

N

© Charles Ames 1984
A B2
D

Pess

—

14

71

——

o

e

K

Nt

o
=

=
-

L ~4

fey

B=="=1%

ate

5-19

5.5.2 Implementation
-- Programming example 5-5: program DEMO3 (2 pages) --

Like program DEMO2, program DEMO3 reflects the dwowbiered
ot pheases and waves

musical structure|as a design of nested loops$ an "outer"
compositional loop (lines 43 to 58 of DEMO3 proper) for phrases
and an "inner" compositional loop (lines 10-39 of PHRASE) for
notes and rests. An extended initialization section (lines 27-39
of DEMO3) samwwdsoe generates pools of samples for each musical
attribute through calls to the library subroutines FILL and
FILLX. The actual selection of attributes is far simpler than in
DEMO2 becgfdue the distributions illustrated in Figure 5-5 are
inherent in the pools; a call to the library subroutine SERIES
is sufficient in each case.

The symbols of DEMO3 adhere to seven mnemonic 'roots'

corresponding to attributes of phrases or units:
1. PHR - length of phrase.

2. AVG - average duration of notes; the average duration

of rests 1s half as large.

3. ART - articulation, expressed as the probability that an

DEMOC3.FOR

1
2
3
4
S
5
7
a8
9

oaon

Page 2

subroutine PHRASE(KTIME,ITIME,AVGDUR,ARTIC, IREG,
POLUNF , POLOUR, POLPCH)

parameter (MUNF=20,MDUR=10,MPCH=40)

integer POLPCH(MPCH)

real POLUNF {MUNF } , POLDUR (MDUR)

data IDXDUWR/0/,10XUNF/0/,I0XPCH/0/

Inner composing loop

do
Select note or rest (no two conmsecutive rests)
if (IPCH.eq.0) then
R = 1.0
else :
call SERIES{R,POLUNF, IDXUNF ,MUNF)
end if
if (R.gt.ARTIC) then
Select duration of note
call SERIES(DUR,POLBUR, IDXDUR,MDUR)
DUR = AVGDUR%DUR + REMAIN
IDUR = max0(1,ifix(DUR+0.5))
REMAIN = DURA - float(IDUR)
Select pitch
call SERIES(IPCH,POLPCH,IOXPCH,MPCH)
IPCH = IREG + IPCH
else
Select duration of rest
call SERIES(DUR,PCLOUR, IDXDUR,MDUR)
DUR = AVGDUR/2.0 % DUR + REMAIN
IDUR = ifix{DUR)}
REMAIN = DUA - Floast(IDUR)
Null pitch indicates rest
IPCH = O
end if
Write note or rest
call WNOTE{ITIME,IDUR,IPCH)
Test for end of phrase
if (ITIME.ge.KTIME) exit
repeat ’
return
end

5-17%

CONOUDWN

onoon

aooon

program DEMO3

Demonstration of statistical frames

parameter (MPHR=13,MAVG=19,MART=8,MREG=7,

MUNF=20,MDUR=10,MPCH=40]}

integer POLPCH(MPCH),POLREG(MREG),POLPHA{MPHR)

real

POLLAVG (MAVG) ,POLART (MART) , POLUNF (MUNF),
POLDUR(MDOUR)

integer VALPHR(3),VALPCH(S)

real
real
data
data
data

data
data
data

data

VALAVG(4),VALART(4)

WGTPHRA(3) ,WGTPCH(9) ,WGTAVG(4) ,WGTART(4)
VALPHR/20,30,40/,WGTPHR/E.,4.,3./,SUMPHR/13.0/
VALAVG/2.,3.,4.,5./,WGTAVG/7.,5.,4.,3./,5UMAVG/19,./
VALPCH/-4,-3,-2,-1, 0, 1, 2, 3, 4/,
WGTPCH/1.00,1.32,1.73,2.28,3.00,2.28,1.73,1.32,1.00/,
SUMPCH/ 15.66/
VALARY/.2,.27,.37,.5/,WGTART/1.,2.,3.,2./,5UMART/8./
POLREG/44,49,54,60,85,70,75/
POLUNF/.025,.075,.125, .175, .225,.275, .325,

.375, .425,.475, .525, .75, .625, .675,
.785,.775,.825, .875,.925, ,975/
IDXPHR/0/,IDXAVG/0/ ,IDXART/0/, IOXREG/D/

Initialization

open

ITIME
MTIME

(2,Ffile="DEMO3.DAT' /status="'NEW')
= 0
= 8 % 60

Generate pool of phrase lengths

call

FILL{POLPHR,VALPHR,WGTPHR, SUMPHR,MPHR,3)

Gemerate pool of average durations for notes

call

FILL(PDLAVG,VALAVG,WGTAVG,SUMAVG,MAVG,4)

Generate pool of rest probabilities

call

FILL{PDLART,VALART ,WGTART,SUMART ,MART ,4)

Gemnerate pool of durations

call

FILLX{POLDUR,1.0,1000.0,M0OUR)

Generate pool of offsets for pitch

call

FILL(POLPCH,VALPCH,WGTPCH,SUMPCH,MPCH,9)

Quter composing loop

do

Select duration of phrase

call SERIES(IPHR,POLPHRA, IDXPHR,MPHR)
KTIME = KTIME + IPHR

Test for end of composition

if

(KTIME.gt.MTIME) exit

Select average duration for notes in phrase
call SERIES(AVGDUR,POLAVG,IDXAVG,MAVG)
Select probability of rest

call SERIES(ARTIC,POLART,IDXART,MART)
Select register

call SERIES(IREG,POLREG, IDXREG,MREG)
Compose phrase

call PHRASE(KTIME,ITIME,AVGODUR,ARTIC,IREG,

POLUNF ,POLOUR, POLPCH)

repeat
close (2)

stop
end

F;i’icf“

5-20

iteration of the inner composing loop will produce a

rest rather than a note.

L. REG - register, expressed as the central pitch in a

nine-semitone gamut.

5., UNF - uniform values between zero and one, used in

play/rest trials.
6. DUR - duration of note or rest.

7. PCH - deviations from central pitch of gamut.

Arrays beginning with POL serve as pools of values for each
attribute; the size of each pool is given by a parameter
starting with the letter M. Each'pool has an associated index,
required by SERIES; this index begins with IDX. 1In those cases
where pools are generated fron émaller sets of values using
subroutine FILL, the original values reside in arrays beginning
with VAL, their associated weights reside in arrays beginning

with WGT, and the sum of these weights is held by a variable

beginning with SUM.

5-21

] ' .
s gttributegs for
rases | ({Line

hﬁthxlak 1- »éfig” to mjro f an o%t r lo
| P '

colpokes |specifi tes |(Lingg; 1PF3
e | |

i
i
s [is| simpler than

selection o f tribu

Lo g RIES \

—

| | |
distribultio s ar inLére " in jthd lpools e
¥uflges.lﬁ%he notion of statistical frames 1ls 1nherent in

! _
Demonstration 3 in that these distributions become manifest each

time SERIES cycles through a pool.

well Notice in particular how DENMO3 generates the pool of
éXponentially distributed durations (line 37) by specifying an
value of 1. for the AVG argument to subroutine FILLX. It is left
to PHRASE to stretch durations as necessary when 1t composes

individual notes or rests (¥ lines 20 and 29).

5.6 AN ALTERNATE APPROACH: KOENIG'S "RATIO" FEATURE

Gottfried Michael Koenig's PROJECTZ2 program (Koenig 1970b)
contains a feature called RATIO which produces results which are
equivalent to what one would obtain using the library subroutines
FILL and SERIES. However, the mechanism of RATIO is quite
different. The user of PROJECT2 provides a "supply" of distinct

options and designates a number of occurances for each option;

5-22

the total of all these numbers of occurances must match the
number of items in the frame. ZFEach call to RATIO returns an
-option selected at random, where the_relative likelihood of each
option depends upon its associated number of occurances. Once it
has selected an option, RATIO decrements this number and
correspondingly reduces this option's likelihood of being chosen
during the next call; when the number falls to zero, the option
ceases to be selected.

An especially attractive feature of Koenig's strategy 1s its
—ﬁotential sensitivity to duration. For example, suppose that we
desire to malntain an equilibrium among the degrees of a scale.
An obvious method of enforcing this desire would be to impose
Schoenberg's rule against repeating any degree until the whole
scale has been used (note 4). However, this restriction fails
when long and short durations are interspersed: without drastic
compensations such as extreme registral displacement or extreme
‘dynamic emphasis, we would be unlikely to judge one
sixteenth-note B equally significant to one whole-note F. An

alternate approach is to require equal durational emphasis of

each degree, so that we could balance a whole note F by, say,
three (not necessarily consecutive) B's, a sixteenth note, a half
‘note, and a double-dotted quarter note. Using Koenig's method,
such a requirement can by imposed by having RATIO process

cunulative durations in place of numbers of occurances.

5.6.1

5-23

Implementation

The library subroutine RATIO implements Koenig's RATIO

feature with sensitivity to duration. RATIO requres 6 arguments:

RESULT - RATIO selects an index I to one of NUM optilons
stored in array VALUE and transfers VALUE(I) to RESULT
(line 10). RESULT may be either an integer or a real

number.

VALUE - Repertory of options. VALUE must be an array of

dimension NUIl whose type 1s identical to that of RESULT.

WEIGHT - Weights associated with each option in array
VALUE. 1Initially, these weights correspond to the
portions of the total duration of all the items in the
frame. After it selects an index I, RATIO reduces
WEIGHT(I) to either WEIGHT(I)-DUR or 0O, whichever is
larger (lines 12-17). WEIGHT must be a real array of

dimension NUM,.

SUM - Sum of the NUM welghts stored in array WEIGHT.
Initially, SUM corresponds to the total duration of all

the items in the frame. ¥ach call to RATIO reduceg this

5-24

quantity by DUR. SUM must be real.

5. DUR - Duration of item for which RESULT is being

selected.
6. NUM - Number of options.

Lines 13-16 of subroutine RATIO prevent any option from assuming
negative weights. TFor example, if the ith option has weight 3.0
and is selected for an item with duration 4.0, then line 12 would
reduce the weight to -1.0. Without lines 13-16, this negative
weight would not only remove the 1ith option from further
consideration, it would also reduce the effective weight
assocliated with the i+lst option by 1.0. To see why, consider
what would happen during the next call to RATIO. Suppose that |
line 3 produces a random value R large enough to survive through
the first i-1 weights. Then during the ith iteration of lines
4-8, the program will set W to -1.0 in line 5, determine that R
is larger than W (since R must be positive) in line 6, and
proceed to subtract W from R in line 7. However, since W is
already negative, line 7 will act to increase R by 1.0. Should
the i+1st weight be a fraction smaller than 1.0, such a negative
weight would effectively remove both the ith option>ggg the

i+lst option from consideration.

"246(

)
=

p)

pu=a
udangad
M = (I)LH9I3M
4T pus
‘0 = M
M - WNS = WNS
usyl (0°"3T°"M) 4T
HNQ - M = M
HNaO - WNS = WNS
(I)3NIVA = LINS34Y
"0ILvd <og sayBrem peg, doas (wWnN'3B°1) 47
aeadad
M - Hd =4
3TX2 (M"8T°d) I4T
(I)LHOI3IM = M
, (WAN‘L=T1) ©op
(J4ANVH 3 WNS = 4
hvuhonmz (1)3NIVA uUoTsuawIp
ﬁz:z HNO‘WNS LHOTIM‘3NTIVACLINSIH)OILVYH SuTanodgns

STNNMOTULONOD
T T T T T T T

<=MNMTNONOO O
-

5-25

-- Programming example 5-6: subroutine RATIO --

If the selection is to be peformed relative to numbers of
occurances (that is, without sensitivity to duration), then array
element WEIGHT(I) should be set to the desired number of
occurances for the Ith option, while SUMfiggglreflect the total
number of items in the frame. In this case DUR must be set to
unity for each call.

To incorporate sensitivity to duration, it 1s necessary to
take into account how long each item lasts. Suppose, for
example, that we have a frame containing MNOT notes, that the
real array element DURNOT(I) contains the duration associated
with the Ith note in the frame and that we wish to select an
option to be stored in the integer érray OPTNOT(I) for
I=1,...,MNOT. Suppose further that we have MOPT options, that an
integer array element VALOPT(J) and a real array element
DENSTY(J) contain the value and density for the Jth option for
J=1,...,MOPT. (The MOPT values in array DENSTY must sum %o
unity.) Then the following excerpt of code would calculate the

required initial values for WEIGHT and SUM and perform the

required calls to RATIO:

- Programming example 5-7 -

5-7154

aeadad

(LdOW‘ (LONI)LONHNO‘"UNOWNS ¢ LdOLOM LdOTVA (LONI)1ONLJO)OILYH TTED

(LONW 1L =10NI) ©op
awed4 UT 830U yoea 4oy suotldo aosfsg

aeadad
(L40I)JALSN3A % HNAWNS = (1d40I)1d0OLOM

(LdOW L =1d01) op
uoTtado yoea 4aog sqayBream saznTosge suTwdaala(

aesdad

(1ONI)L1ONHNO + YHNAWNS = YNOWNS
(LONW®L=10ONI) op
‘0 = 4NawWns

aWed4 UT sS=230u [IE JSA0 UOTIEJNP SATIETNWND autwdsjiag

™~

TS g

g

5-26

It makes little sense to apply subroutine RATIO if a
statistical frame contains insufficient notes to truly reflect
the prescribed distribution of options. If Dmax and Dmin
represent the longest and shortest durations, respectively, while
NUM represents the number of options, then the number of notes in
a frame should equal or exceed the value Nmin defined in Equation

54,

Nmin = Dmax * NUM (Equation 5-4)
Dmin

It is not necessary to assign equal weights to each option.
One can alternately prescribe some array of densities DENSTY,
then initialize WEIGHT(I) to DENSTY(I)¥*SUM. In such cases
Equation 5-U4 generalizes to become Equation 5-5, where Pmin

’ represents the smallest of all NUM densities.

Nmin = Dmax * NUM (Equation 5-5)
Dmin Pmin

5.6.2 Example: Composing a 'Balanced' Melody

We illustrate the use of RATIO by using it to compose a

melody consisting of 31 notes, each described by three attributes

—
)

Lo

S3Ydid il 39VLS

oot s e LT (T éﬁ_ P Ty E:EWZN

SUOHDING || JOVLS

| UROTT O AT T T OUT UL T G T s

Spoldad 1} 39VLS

5-27

SULCess: ve
selected during dwmsssmet stages of production: period, duration,

and pitch. With regard to periods and pitches, selection is
'balanced' in the sense that each option receives equal emphasis
over the melody as a whole. Figure 5-8 depicts the results of

~ each stage.

Figure 5-8: Composing a 'balanced' melody - In Stage
I, thin brackets show periods of length two, medium
brackets show periods of length three, and thick

brackets show periods of length five.

5.6.2.1 Stage I: Periods - Consecutive attacks may be separated
by two, three, or five sixteenths. The process of seleéting
periods is numerically oriented. The initial numbers of
occurances for these options are set so that the cumulative
amount of time allotted to each option remains fixed: periods of
length two occur 15 times, periods of length three occur 10
times, while periods of length five occur only 6 times. Notice
that in each case the length of a period multiplied by the number
of occurances yields a cumulative result of 30. Table 5-4
chronicles the attrition of the numbers of occurances allotted to

each period as RATIO composes the sequence:

5-7Tw

[S 2
G 8L 0 LGL”® ‘1 0 0 ‘1 0:21
I o1 ¥c8” R4 ‘0 ‘0 ‘g 9Ll
€ 8L°¢ 9¢L” ‘€ °0 °L 'S g-ll
é 020 6%0° ¥ 0 ‘L ‘g LiLlL
] £E6° % 986" R ‘L L '€ 0L
.G GO 1L GLL® ‘9 1 ‘1 4 ¢:0lL
4 8L°0 LLL- "L “lL ‘L ‘G 0:01L
S 029 YLL® '8 ‘S ‘L ‘g €6
[4 290 890" ‘6 ‘g L ‘9 L:6
€ Yc' L el ‘0L ‘G 'S ‘9 9:8
G 80°¢€ 08¢° Lt '3 ‘G "L '8
S vL'6 9L’ ‘gl ‘€ ‘G ‘L Ll
€ 66°8 L69° ‘gl e ‘€ "L PiL
é €L70 GG0- Pl "€ g '8 G L
S Gv'cl Lg8" ‘Gl P ‘€ ‘8 G:9
£ 96" L 1L LyL-® ‘91 v 4 '8 9
t 097l 8¢8” Ll ‘g i 4 '8 G:¢
€ c6°6 LGG" ‘8l g ‘G '8 G+ S
£ 8G Gl L89" ‘61l ‘G '9 '8 €'y
4 L9 ¢ 08¢* ‘03¢ IR ‘9 ‘6 Sy
g 9G¢- 8l ¥88° ‘Le ‘9 ‘9 ‘6 o'y
€ 6E€°6 9¢v - ‘¢¢ ‘9 "L "6 G:g
é 60°0 £00° ‘€¢ ‘9 "L ‘ol €'e
€ ce " LL LgL-: "¥e ‘9 '8 ‘0ol 0:€
I 98°'6 ¥6E” ‘Ge '9 ‘8 LL 9:2
€ oL "8l -969° *9¢ ‘9 ‘6 Ll £:¢
G €v 0L 98¢” ‘L3 ‘9 ‘6 ‘gl L:2
4 98°9 Svs” ‘8¢ ‘9 ‘6 ‘gl Ll
G 9G6°6 6ct” ‘6¢ ‘9 ‘6 vl Gl
G 89°¢C 681L° ‘o€ ‘9 ‘6 ‘GL €l
€ £€€°0¢ GG9" ‘LE ‘9 ‘0L "Gl 0l
pPOT48d () ANVYxuUNg ()JINVY ung ¢ € ré jesqg B
[SER R TN s1y3TopmM aJanseay

Table 5-4: Composing a sequence of rhythmic periods

using subroutine RATIO.

5.6.2.2 Stage II: Durations - Figure 5-9 illustrates how RATIO
selects durations for each of the rhythmic periods illustrated in
Figure'5—8. This application divides the 31 notes into into six
frames of five to six notes. Each call to RATIO selects one note
oﬁt of a frame in order to append a sixteenth onto the chuuggsdﬁdﬂA
note's duration. Once again, selection 1s made on a numeric
basis, with the "number of occurances" for each note given by the
number of free sixteenths available to the note. Initially,
every note in the frame has a duration of one sixteenth, so notes
with period 2 have 1 free sixteenth; notes with period 3 have 2
free sixteenths, and notes with period 5 have 4 free sixteenths.
The likelihood of choosing a note depends upon the number of free
sixteenths left in its period; when the duration of a note
reaches the period, the number of free sixteenths drops to zero,
so the note is no longer consldered.

In order to achieve a graded progression from detached to
sustained articulations, the percentage of the total number of
free s . ageed,

ree sixteenths which RATIO is‘to fill rises i1ncrementally from

0% in the first frame to 100% in the sixth. This percentage

ddidian

(4] Q [

[

0o

AS{Ea
SS[S!
PR g
Ly 1
LI+
SRR
Iy

Ay
TN

© ‘Hij Of suollisod
& :3IqDJIDAD SUOHISd
%001 1UOLDINDIIY

9 swp.d

.AE‘ .,a:i:‘ ,.af‘

L e
e
VLUt
IR AN
IR
ARER IR
AR S
ERER

L Y o} suolsog
6 19QDIIDAD SUOLISOd
%08 :UoHDINDLIY

G awpl4

i

o]

7

o q
I
I

LRI

1 f
»L. AM”\

¥

{

14

]
{4
0
0¥

iRl
A&.‘ L »Ls
»as&.‘ h N.m-

3 14

L it} O} suoijisod
2| -3IgD[IDAD SUOH}ISOd
o409 UOHOINdILIY

b awoi4

ST Y
ST Y
RC Rt
s Et
Y

b I OF suokisod
[:3IGDJI0AD SUOI}ISOY
%Ot uoyoindly

¢ awoiq

SRR
LR
EELEL

2 1 O} suoijisod
Ol :2IGDIIDAD SuOISOY
%02 HUODINILIY

2 awpiy

T A

O 11} oF suotyisod
8 -3qDlIDAD SUOHISOd
%0 NOHDINILIY

| swoi4

5-29

determines the number of times RATIO is invoked within each

frame.

Figure 5-9: Selection of durations for the melody

depicted in Figure 5-8.

'5.6.2.3 Stage III: Pitches - Pitches in Figure 5-8 are selected

from six options: =4, FL4, Gbl, A#4, B4, and C5. The sequence of

decisions consists of having RATIO select one pitch
note, moving from left to right in the melody. The
provide equal durational emphasis to each pitch, so

total of all the durations selected during stage II

of the six pitches receives an initial weight of 10.

chronicles the attrition of the weights allotted to

RATIO composes the sequence:

Table 5~5; Selecting pitches with sensitivity

duration.

for each

object 1is to

since the

is 60.0, each
Table 5-5

each pitch as

to

kol
]
+ g
O Q IO HIH I HIHHE IO MO D PO PP
R R RO OOMN OO OOMRAERIEMITOMNMMFMOREKNDOD 0 KO
—~ <€ < (&} &} < <q O = O =
QX
[7p]
i) QOO OOV ONHNIMMOOOO
| @S] Lol ol el i i Sl
ETJ‘ OO0V NODSESNNFIIOONOOOOOOOO
-
<t e 5 s a4 s e s s e e e e s s+ s e e o o s + s e s+ 4 o 2 e o e
U)Zﬁt OOV OVDODDVDDLODODDODONDNNOINOOOOWOINDNDNM
+ —
<
&0
- « 4 6 e s s e e a8 s e e e s+ e & e e 4 e e & s & e 4 * e e .
O Q OO0 OCOOOOOOHN VOOV ODYUODULVWVLLLYLOLHNWIUM
=0 —Trrr e
< oNoNoNeNoNoNoResNeolesNe sl NN RLNONuNoNwEwEwEvEvEvEsNeoloReNoNoNe]
e -
E SOOI LONOOMNMNOO
- :
e
@]
o
) s e s & s e e & & 4 & e e e & a2 s & & s e e s e s & 8 s o o
[T e N HANO T T IONONST N TN NN
& .
=
a
Q
2
< m mTrrrrNANNOONOHEEENDNDOO--00ONOOD OO0 - rQN
[0} ~—Trrrrreooreoe
= o3

I? bile S. &

5-30

5.7 NOTES

1. While direct random selection also corresponds to drawing
balls from an urn in the manner described here, it differs in the

Nlo..xr\: awn
crucial respect that after the -cesmsemmsE cach ball has been noted,
he balls ave
the ball is replaced in the urn and ' remixea prior to the next

draw.,

2. BEven when the process of organizing a frame is stylistically
‘conditioned, it is often useful to shuffle a pool before imposing
other criteria of organization. This precaution removes any bilas

inherent in the way samples in the pool are derived.

3. This algorithm comes to the author by way of Donald Knuth
(1969, page 125).

. et cheu
4. Schoenberg is best known for applying this =& to the
chromatic scale in his twelve-tone system. However, even in a
diatonic context he advises: "Monotony is often produced through
too frequent repetition of one tone or of a succession of several
tones, and through remaining too long within the range of a

fourth or fifth" (Preliminary Exercises in Counterpoint, 1963).

As reasonable as this comment of Schoenberg's may seem, it should

be taken as an expression of taste rather than an inflexible

5-31

A\‘(A’W\M.

—tme . Much different tastes guided Stravinsky, for example, when
he composed the choral melodies for the finale of his Symphony

of Psalms.

5.8 RECONMMENDED READING

Koenig, Gottfried Michael, 1970b. "PROJECT 2: A programme for

musical composition", Electronic Music Reports, number 3.

Laske, Otto, 1981. ‘"Composition theory in Koenig's Project One

and Project Two", Computer Music Journal, volume 5, number 4,

page 54.

	1
	2
	3
	4

