CHAPTER 2

FUNDAMENTALS OF PROGRAMMING LANGUAGES

This chapter reviews basic concepts of programming. It
introduces important terms dealing with how computers work, how
programs are structured, and how data is organized and
nanipulated. It also surveys various types of programming
environments, discussing their relative advantages and
disadvantagés. In particular, it summarizes the dialect of
FORTRAN '77 used to encode the various programs and utilities

described in this book.

2.1 THE PROGRAMMING ENVIRONMENT

Figure 2-1: Flow of information in a comprehensive
programming environment - Upper case designations
indicate precompiled utilities; lower case

designations indicate user programs after various



TEXT EDITOR

+

Source Progranm

COMPILER

Object Code

LINKER

LIBRARY EDITOR

Binary Program

Relocatable Library

Z_QCL



stages of processing.

Figure 2-1 charts the steps involved in transforming a user
program from a file of statements encoded in a language
understandable to a programmer into a file of binary instructions
executable by a computer. A complete programming environment
includes at least four basic utilities which for many computing

systems are supplied by the manufacturer: a text editor, a

compiler (or assembler), a library editor, and a linker.

The heart of any programming environment is the compiler, which
accepts a file of statements written in a language such as
FORTRAN and translates these statements into a new file

containing binary instructions. The file accepted by the

compiler is conventionally referred to as the source file,
while the file of binary instructions is called the object

file. The text editor enables the programmer to create and

modify source files interactively at a terminal and to store
these source files on a "mass storage" device such as a magnetic
disk. Programs may be conceived for a specific purpose or may
alternately be generalized subroutines useful under a wide
variety of circumstances; 1in the latter case, it 1is often
convenlent to avoid recompiling a subroutine for each new

application by storing the object code in a relocatable

library. The library editor enables a programmer to insert




2-3

new object files into such a library and to delete old
subroutines which no longer serve a purpose.

Typically, the compiler itself will delegate many generic
procedures such as input/output activities and mathematical
functions to precompiled library entries. To run a program, it
is necessary both to convert the source file into object form and
to 'borrow' from one or more relocatable libraries any
subroutines which are not explicitly encoded in the source file.

" The linker satisfies these 'dangling' subroutine calls by krfu(W3

object file with == library entries o wio

espesspess, Dinary program. This binary program -- itself be stored
as a file on a mass storage device -- may then be loaded into the
computer's random-access memory as direct instructions to the

processor.

2.2 ASSEMBLERS

The simplest languages are assembly codes, which first
appeared in the early 1950's. Assembly codes are so rudimentary
that many prdgrammers prefer not to dignify them as "languages".
The program which translates an assembly code into direct binary

instructions is called an assembler. Assemblers are



2-4

machine-dependent. The codes include mnemonics to represent

each operation a machine is capable of performing, and symbols
to represent locations in memory. Symbols for locations
containing instructions to the computer are called labels,
while symbols for locations containing data are called
variables or, when appropriate, constants.

The following program illustrates the mnemonics and symbols
used for an assembler. It compares the contents of locations X
~and Y and stores the smaller value in location Z. Notice the
difference in function between labels and symbols. Labels appear
as operands to branching instructions such as BR (branch
unconditionally) and BGT (branch if greater than). Normally, the
computer executes instructions sequentially as the eye moves down
the page; a branching instruction causes the computer to
transfer control from one part of a program to another. By
contrast, symbols appear as operands to instructions such as CMP
(compare two numbers), MOV (transfer a value from one location to

another), addition, subtraction, multiplication, and so on.
-- Programming example 2-1 --
Assemblers are 1ldeal for programs such as operating systems,

which are heavily used and which must run very quickly. Since

the code directly reflects the architecture of a particular



2‘4(1

uoTaeJdado opN!

X 40 S3u=23U0D 03 7 J0 S3uU33U0D 3a8gé
273gv1 93 A{TBUoT1IPpUOIUN youedag!

A 40 sS3us3uoD 03 7 40 s3uajuoo 3agé
30UaJdsl44TP aAT3TsS0d 4T L73gvT 03 youeug!

g + sk = —
X s A N,N¢w
A YT 3onpoud o3 g ppy! A8 aav
s Ag A Atdratnp! A‘S INW
A 03 X 40 S3U33UOD BAOK! AfX AOW -7 5
40N 2738V
z'x AOW :17138v7
2713av1 Hg
Z'A AOW
L13gvTl 199
AfX diW3 [.7 X2
JUsWWon spuedJadg uoT3zedadq 129E7 Y !

A 40 S3usjuoo 03 X J0o s3ua3uoo adeduwont



machine, it allows programmers to optimize the size and speed
of a program. However, the sheer detall of assembly-code
programs often makes them a nightmare to create or revise.
Since very early on, assemblers have included features
allowing programmers to define macros. A macro consists of
several instructions in a predefined sequence which the

programmer may invoke using a single "pseudo-instruction".

2.3 COMPILERS

The earliest compiler was FORTRAN (Backus, et al, 1957),
which stands for "FORmula TRANslation". FORTRAN was first
introduced in 1956. Where assemblers require a programmer to
code his

eliminate much drudgery by allowing a programer to use

expressions. The following example illustrates that it

requires only one FORTRAN expression to encode a formula which

would have required three statements in assembly language:

-- Programming example 2-2 --

2-5

Another difference between assemblers and compilers is that



2-6

compilers are (properly) machine independent. The operations

represented in compiled languages are generic: "assign a value
to a variable", "jump to a label"; the compiler itself decides
which specific instructions are most appropriate to each
operation. Obviously, compilers represent an extreme increase in
convenience to the programmer. In payment there is a noticeable
decrease in efficlency; even with modern "optimizing" compilers,
compiied programs tend run at about half the speed and require

..about one and a half times the memory used by assembled programs.

2.3.1 Data Structures

A.QS i\a '*—\’\

o
Compllers s2my allow programmers to d==s =

types of variable’ and levels of precision. The precision
indicates how much memory 1s allocated to a variable. The
smallest unit of memory is the bit, or binary digit.
Precisions are usually expressed in bytes, which consist of
eight bits on most computers, six bits on a few older designs.

There are four fundamental types of variable:

1. Integers are numbers without fractional parts.

Integers are the numbers which computers are most adept



2-7

at manipulating. Each integer is stored as a one-bit
sign and a magnitude whose maximum size depends on

the preclision of the variable.

Real or (properly) floating-point numbers have

fractional parts, though fractional parts of zero are
possible. Real numbers are stored as a sign, an
exponent, and a mantissa. The mantissa gives the

"most significant" digits, while the exponent places the
decimal point. Usually the range of the exponent stays
fixed, so that increased precision indicates a longer

mantissa.

Characters include all of the symbols on a terminal
keyboard, plus a number of special codes ("control-C",
for example). Characters are usually stored as simple

magnitudes in single bytes.

Logical or Boolean variables can take on two values:

true (-1) or false (0). Expressions involving logical
variables typically appear in statements affecting
transfer of control. Logilcal variables are typically
stored with single-byte precision, but their only

significant content is their sign.



2-8

Variables are often declared and used singly; however, they are
almost as often organized into constructs called both

information structures and data structures. The simplest

data structure is the array. Arrays consist of many varilables,
individually designated as elements, which are stored
consecutively in memory. The number of elements in an array
constitutes its dimension. In order to access a particular
element, the programmer must specify both the array name and an
index. The array name is a symbol representing the location in
memory containing the first element of the array, and the index
allows the program to compute an "offset" relative to this
location. Arrays of characters are often referred to as strings.
All languages from assemblers on include features for
defining one-dimensional arrays of variables. Newer languages
attempt an additional increase in sophistication by including
facilities for advanced data structures such as multi-dimensional
arrays, linked lists, "files", and trees. The advanced data
structures cited in this paragraph will be introduced as
necessary in this book. Such facilities accomplish implicitly
what programmers working in languages such as FORTRAN have had to
code explicitly. In payment, a programmer must put up with a
further reduction in computational efficiency. Sometimes an
implicit data structure will in fact be limiting; for example,

those languages which some computer scientists incorrectly call



2-9

"naturally recursive" due to their implementation around an
implicit "stack" (included are ALGOL, PASCAL, and LISP) preclude
varileties of recursive programming such as constrained search

(Chapter 14), which uses a "queue".

2.3.2 Flow of Control

In order to transfer control from one part of an early
FORTRAN program to another, the programmer defined labels similar
in function to ﬁhose provided by assemblers. The assembly-code
program for setting the Z to the smaller of X and Y translates

into FORTRAN as follows:

Block structures enable a programmer to specify flow of

control without defining labels. They contribute little to the
efficiency of a program, but do allow for code which is much more
readable and amenable to revision than label-oriented code such
as the above excerpt. Using a language with block-structures
such as FORTRAN '77, a programmer might set Z to the smaller of X

and Y as follows:









Z-Ta

sanuUT3UoD g2
0L o©3 ofb
A+ A=A

o2 o3 ob (x*=aB*A) 47 0Ol

0L = A

4T pua
X =z
as{s
A=z
uaya (A'3Brx) I

sNUT3IUOD (g2
A =2Z 0l
g2 o3 ob
X =12
Ot o3 oB (A*3B-x) 4t



s TUnaaeAo Aeaay, doas (LTWITN3B xar) 4t
. aeadadg

ATX3 ((XOI)3ANIVA'2T"X) 3T
(LIWITf1=Xxa1) op

... e

L TUNnddsao Aeday, doas (LIWIT 3B xar) 271 vp
aNUTAUDD €f
by 03 oB ((XQI)3INIVA ST X) 4T
LINI‘L=Xal €t op

J\
i

~N
¥
LD

3eadad

A+ A= A
3Txa (X abB*A) 41 A > W

op 2 *E
0L = A



2-10

-- Programming example 2-4 --

Loops are fundamental constructs for performing repeated
computations. Using older FORTRAN's, programmers need to specify
labels for loops. For example, the following routine compares
increasing powers of two with the variable X until it finds a

power which just exceeds X:
-- Programming example 2-5 --

The dialect of FORTRAN '77 used in this book provides a

block-structured construct which allows a programmer to dispense

with labels:
-- Programming example 2-6 -~

Many loops depend on a special index. For example, the following
excerpt from a program locates the first element of array VALUE
which 1s smaller than the variable X. It is presented in two
versions, the first using the labeled DO construct standard to
FORTRAN IV and FORTRAN '77, the second using a block-structured

DO

~-- Programming example 2-7 --



2-11

Each time either version of the program reaches the bottom of the
loop, (the CONTINUE statement in the first version and the REPEAT
statement in the second) it increments the variable IDX by 1 and
compares the result to LIMIT. As long as IDX does not exceed
LIMIT, the program keeps looping. Notice, however, that if the
program does manage to leave the loop through the bottom, the
value of IDX upon leaving the loop becomes LIMIT+1. This fact
allows the program to insure that it has indeed located a
»mlegifimate element of array VALUE by testing that IDX does not
exceed LIMIT (note 1).

The first language to incorporate block structures, ALGOL,
was first introduced in 1958. ALGOL stands for "ALGOrithmic
Language". Though ALGOL is no longer widely used, it has found
popular successors in PASCAL (Jensen and Wirth, 1978), a
pedagogic language introduced in 1970, and C (Kerninghan and
Ritchie, 1978), an efficient and highly practical language
introduced in 1975. The attractions of block structures led in
1977 to establishment of a néw standard of FORTRAN incorporating
them to a limited extent (Wagener, 1980), as well as several more

complete variants (for example, the dialect used here).



2-12

2.3.3 Subroutines

One technique of programming which is greatly facilitated by

compilers is the use of gubroutines (also called subprograms

or procedures). Subroutines are useful when a program repeats

similar tasks in multiple contexts. They allow a program to
transfer control to an independent block of code (the
subroutine); after performing its appointed task, the subroutine
:phen directs the main program to resume wherever it left off. We
say that the main program calls the subroutine, while the
subroutine returns to the main program. The advantéges of
subroutines are that they conserve memory by eliminating
redundant code (unlike the macros of assembly codes) and that
they help resolve complicated routines into more easily
understood modules. The latter immensely increases convenlence
in "debugging" (note 2).

Such modular programming is especilally convenient in
languages such as FORTRAN and the descendents of ALGOL, which
allow programmers to distinguish between local and global
(common) variables. In FORTRAN any variable which is neither
explicitly passed in a subroutine call nor explicitly
designated as common to both calling routine and subroutine
will be local: operations performed on such a variable by the

subroutine will have no effect upon similarly named variables in



the calling program, and vice versa.
Since tasks are likely to vary from situation to situation,
it 1is usually necessary to have the main program pass

parameters (also called arguments or dummy variables; the

last term should be avoided) which affect how the subroutine
works but which may change from one call to the next. Since
subroutines must be capable of processing not only simple

variables, but often entire arrays, it 1s conventional for the

- main program to pass the location of each parameter to the

subroutine and to let the subroutine interpret these locations as
it sees fit. This convention allows subroutines to actively
manipulate the values stored in these locations. For example,

after the following call to subroutine NULL from program MAIN:

-- Programming example 2-8 --

will set location 4 of ARRAY to zero. The size of array ARG
declared in subroutine NULL is meaningless because the array has
already been dimensioned in the main program; the DIMENSION
statement serves simply to inform the compiler that ARG itself is
an array.

FORTRAN seems unique among compiled languages in its
implementation of common memory declarations. Blocks of common

memory afford an additional means of passing information between



4

[~

AV

pusa

udnayad

0°'0 = (2)ouyv

(1)9dy uvoTsuawIp
(9HVY)TIAN suTtanougns

pus
doas

((E)YAVHHY)TINN TTE0
/0°1L°0° L0 L 0L 0" L/AVHHY EaEp
(S)AVHHY uoTsSUSWTIP

NIVW wedboud

@(N. Xmu



2-14

a main program and its various subroutines. Languages descending
from ALGOL compensate by allowing for subroutines which can

allocate memory dynamically as temporary workspace to be

retrieved for other purposes when the subroutine completes its
tasks; in FORTRAN subroutines, such workspace must be allocated
explicitly by the méin program and passed in one or more
arguments.

Compilers often include a special kind of subroutine called
‘g function. Calls to functions are encoded directly into
expressions involving the four fundamental types of data
described previously. Each call returns a single item of data

which assumes the role of a normal variable or array reference in

an expression. Also related to subroutines are coroutines.
Coroutines are used in real-time programming to implement tasks
such as input and output of data which may performed "in

parallel” (simultaneously) with the calling progran.

2.4 INTERPRETERS

An alternative to both the assembler and the compiler is the

interpreter. Interpreters are designed to "interact" with a

programmer so that he may make small changes in his program and



2-15

test them instantly, without having to invoke a compiler or
assembler. Interpreters reside in memory with a program and
compile it line-by-line as the program executes. This means that
interpreted programs are the slowest programs around (much too
slow for many of the applications described in the latter part of
this book). They must also yleld large amounts of memory to the
resident interpreter. The most widely known interpreters are
BASIC and LISP.

BASIC was introduced by John Kemeny and Thomas Kurtz in
i963. Though intended for pedagogic use (the name is an acronym
for "Beginner's All-purpose Symbolic Instruction Code"), BASIC
has proliferated among users of personal cowmputers. What
convenience BASIC gains through its interpretive implementation
is more than offset by the tedium of its format: each BASIC
statement has its own numeric label, and each label must occur in
order. This feature renders it difficult to insert new blocks of
code. BASIC provides only the most rudimentary facility for
subroutines, with no isolation of symbols.

LISP (McCarthy, et al, 1965), introduced in 1965, stands for
"LISt Processor". It includes implicit facilities for certain
kinds of linked lists and for stack-oriented recursion. In
strong contrast to BASIC, flow of control in LISP is acheived
exclusively through block structures. This feature makes LISP

programs much more malleable than BASIC programs. LISP is highly



2-16

regarded in artificial intelligence circles; however, at least

one respected author -- Donald Knuth -- treats LISP with disdain

(Fundamental Algorithms, 1973, p. 229).

2.5 PSEUDO-COMPILERS

An intermediate step between the compiler and the

interpreter is the pseudo-compiler. Unlike true compilers,

which translate programs directly into machine instructions,
pseudo-compllers translate programs into "object code". The
translation parses expressions into simple instructions, but a
the computer still requires a resident interpreter to make sense
of the result. SNOBOL (Griswold, et al, 1968), introduced in
1962 but now largely out of favor, is pseudo-compiled.
Pseudo-compllers are easier to implement than true compllers;
many of the BASIC and PASCAL "compilers" which have been
developed for personal computers are actually pseudo-compilers.
Since the pseudo-compiler eliminates many of the functions
exercised by a full-fledged interpreter, pseudo-compiled programs
are much faster than interpreted ones. Since the interpeter is
smaller, they yield less memory. However, pseudo-compiled

"programs still take six or more times as long as assembled ones



2-17

and still take up much more space. Pseudo-compllers are no more

interactive than true compilers.

2.6 NOTES

1. The DO-REPEAT-EXIT construct is not standard to FORTRAN '77
'{compilers; however, it appears in this book since it makes
programg nuch more readable. A program for converting
DO-REPEAT-EXIT constructs into conventional FORTRAN '77 appears

in Wagener, 1980, page 346.

2. The term "bug" originated with the Mark I computer, a
programmable, electro-mechanical calculating machine developed by
Howard Aiken at Harvard University and used by the U.S. Navy to
compute ordinance tables. One day in August, 1945, a two-inch
moth became entangled in the machinery and caused the Mark I to
malfunction. According to Commodore Gracé Hopper, then a
lieutennent in Aiken's staff: "From then on, when anything went
wrong with a computer, we said it had bugs in it." (Time

Magazine, April 16, 1984).



	1
	2
	3
	4



